forked from 626_privacy/tensorflow_privacy
More docstring updates in preparation for api docs generation.
PiperOrigin-RevId: 368667796
This commit is contained in:
parent
ca347b8995
commit
41530f4426
10 changed files with 136 additions and 73 deletions
|
@ -60,16 +60,16 @@ class PrivacyLedger(object):
|
|||
def __init__(self,
|
||||
population_size,
|
||||
selection_probability):
|
||||
"""Initialize the PrivacyLedger.
|
||||
"""Initializes the PrivacyLedger.
|
||||
|
||||
Args:
|
||||
population_size: An integer (may be variable) specifying the size of the
|
||||
population, i.e. size of the training data used in each epoch.
|
||||
selection_probability: A float (may be variable) specifying the
|
||||
probability each record is included in a sample.
|
||||
selection_probability: A floating point value (may be variable) specifying
|
||||
the probability each record is included in a sample.
|
||||
|
||||
Raises:
|
||||
ValueError: If selection_probability is 0.
|
||||
ValueError: If `selection_probability` is 0.
|
||||
"""
|
||||
self._population_size = population_size
|
||||
self._selection_probability = selection_probability
|
||||
|
@ -141,7 +141,7 @@ class PrivacyLedger(object):
|
|||
sess: The tensorflow session in which the ledger was created.
|
||||
|
||||
Returns:
|
||||
The query ledger as a list of SampleEntries.
|
||||
The query ledger as a list of `SampleEntry` instances.
|
||||
"""
|
||||
sample_array = sess.run(self._sample_buffer.values)
|
||||
query_array = sess.run(self._query_buffer.values)
|
||||
|
@ -152,7 +152,7 @@ class PrivacyLedger(object):
|
|||
"""Gets the formatted query ledger.
|
||||
|
||||
Returns:
|
||||
The query ledger as a list of SampleEntries.
|
||||
The query ledger as a list of `SampleEntry` instances.
|
||||
"""
|
||||
sample_array = self._sample_buffer.values.numpy()
|
||||
query_array = self._query_buffer.values.numpy()
|
||||
|
@ -161,21 +161,21 @@ class PrivacyLedger(object):
|
|||
|
||||
|
||||
class QueryWithLedger(dp_query.DPQuery):
|
||||
"""A class for DP queries that record events to a PrivacyLedger.
|
||||
"""A class for DP queries that record events to a `PrivacyLedger`.
|
||||
|
||||
QueryWithLedger should be the top-level query in a structure of queries that
|
||||
`QueryWithLedger` should be the top-level query in a structure of queries that
|
||||
may include sum queries, nested queries, etc. It should simply wrap another
|
||||
query and contain a reference to the ledger. Any contained queries (including
|
||||
those contained in the leaves of a nested query) should also contain a
|
||||
reference to the same ledger object.
|
||||
|
||||
For example usage, see privacy_ledger_test.py.
|
||||
For example usage, see `privacy_ledger_test.py`.
|
||||
"""
|
||||
|
||||
def __init__(self, query,
|
||||
population_size=None, selection_probability=None,
|
||||
ledger=None):
|
||||
"""Initializes the QueryWithLedger.
|
||||
"""Initializes the `QueryWithLedger`.
|
||||
|
||||
Args:
|
||||
query: The query whose events should be recorded to the ledger. Any
|
||||
|
@ -183,12 +183,12 @@ class QueryWithLedger(dp_query.DPQuery):
|
|||
contain a reference to the same ledger given here.
|
||||
population_size: An integer (may be variable) specifying the size of the
|
||||
population, i.e. size of the training data used in each epoch. May be
|
||||
None if `ledger` is specified.
|
||||
selection_probability: A float (may be variable) specifying the
|
||||
probability each record is included in a sample. May be None if `ledger`
|
||||
is specified.
|
||||
ledger: A PrivacyLedger to use. Must be specified if either of
|
||||
`population_size` or `selection_probability` is None.
|
||||
`None` if `ledger` is specified.
|
||||
selection_probability: A floating point value (may be variable) specifying
|
||||
the probability each record is included in a sample. May be `None` if
|
||||
`ledger` is specified.
|
||||
ledger: A `PrivacyLedger` to use. Must be specified if either of
|
||||
`population_size` or `selection_probability` is `None`.
|
||||
"""
|
||||
self._query = query
|
||||
if population_size is not None and selection_probability is not None:
|
||||
|
|
|
@ -293,7 +293,7 @@ def _compute_rdp(q, sigma, alpha):
|
|||
|
||||
|
||||
def compute_rdp(q, noise_multiplier, steps, orders):
|
||||
"""Compute RDP of the Sampled Gaussian Mechanism.
|
||||
"""Computes RDP of the Sampled Gaussian Mechanism.
|
||||
|
||||
Args:
|
||||
q: The sampling rate.
|
||||
|
@ -303,7 +303,7 @@ def compute_rdp(q, noise_multiplier, steps, orders):
|
|||
orders: An array (or a scalar) of RDP orders.
|
||||
|
||||
Returns:
|
||||
The RDPs at all orders, can be np.inf.
|
||||
The RDPs at all orders. Can be `np.inf`.
|
||||
"""
|
||||
if np.isscalar(orders):
|
||||
rdp = _compute_rdp(q, noise_multiplier, orders)
|
||||
|
@ -316,7 +316,7 @@ def compute_rdp(q, noise_multiplier, steps, orders):
|
|||
|
||||
def compute_heterogenous_rdp(sampling_probabilities, noise_multipliers,
|
||||
steps_list, orders):
|
||||
"""Compute RDP of Heteregoneous Applications of Sampled Gaussian Mechanisms.
|
||||
"""Computes RDP of Heteregoneous Applications of Sampled Gaussian Mechanisms.
|
||||
|
||||
Args:
|
||||
sampling_probabilities: A list containing the sampling rates.
|
||||
|
@ -328,7 +328,7 @@ def compute_heterogenous_rdp(sampling_probabilities, noise_multipliers,
|
|||
orders: An array (or a scalar) of RDP orders.
|
||||
|
||||
Returns:
|
||||
The RDPs at all orders, can be np.inf.
|
||||
The RDPs at all orders. Can be `np.inf`.
|
||||
"""
|
||||
assert len(sampling_probabilities) == len(noise_multipliers)
|
||||
|
||||
|
@ -341,18 +341,19 @@ def compute_heterogenous_rdp(sampling_probabilities, noise_multipliers,
|
|||
|
||||
|
||||
def get_privacy_spent(orders, rdp, target_eps=None, target_delta=None):
|
||||
"""Compute delta (or eps) for given eps (or delta) from RDP values.
|
||||
"""Computes delta (or eps) for given eps (or delta) from RDP values.
|
||||
|
||||
Args:
|
||||
orders: An array (or a scalar) of RDP orders.
|
||||
rdp: An array of RDP values. Must be of the same length as the orders list.
|
||||
target_eps: If not None, the epsilon for which we compute the corresponding
|
||||
delta.
|
||||
target_delta: If not None, the delta for which we compute the corresponding
|
||||
epsilon. Exactly one of target_eps and target_delta must be None.
|
||||
target_eps: If not `None`, the epsilon for which we compute the
|
||||
corresponding delta.
|
||||
target_delta: If not `None`, the delta for which we compute the
|
||||
corresponding epsilon. Exactly one of `target_eps` and `target_delta`
|
||||
must be `None`.
|
||||
|
||||
Returns:
|
||||
eps, delta, opt_order.
|
||||
A tuple of epsilon, delta, and the optimal order.
|
||||
|
||||
Raises:
|
||||
ValueError: If target_eps and target_delta are messed up.
|
||||
|
@ -374,14 +375,14 @@ def get_privacy_spent(orders, rdp, target_eps=None, target_delta=None):
|
|||
|
||||
|
||||
def compute_rdp_from_ledger(ledger, orders):
|
||||
"""Compute RDP of Sampled Gaussian Mechanism from ledger.
|
||||
"""Computes RDP of Sampled Gaussian Mechanism from ledger.
|
||||
|
||||
Args:
|
||||
ledger: A formatted privacy ledger.
|
||||
orders: An array (or a scalar) of RDP orders.
|
||||
|
||||
Returns:
|
||||
RDP at all orders, can be np.inf.
|
||||
RDP at all orders. Can be `np.inf`.
|
||||
"""
|
||||
total_rdp = np.zeros_like(orders, dtype=float)
|
||||
for sample in ledger:
|
||||
|
|
|
@ -159,7 +159,7 @@ class DPQuery(object):
|
|||
|
||||
Returns:
|
||||
The updated sample state. In standard DP-SGD training, the set of
|
||||
previous mcrobatch gradients with the addition of the record argument.
|
||||
previous microbatch gradients with the addition of the record argument.
|
||||
"""
|
||||
preprocessed_record = self.preprocess_record(params, record)
|
||||
return self.accumulate_preprocessed_record(
|
||||
|
|
|
@ -43,6 +43,7 @@ class DNNClassifier(tf.estimator.Estimator):
|
|||
loss_reduction=tf.keras.losses.Reduction.NONE,
|
||||
batch_norm=False,
|
||||
):
|
||||
"""See `tf.estimator.DNNClassifier`."""
|
||||
head = head_utils.binary_or_multi_class_head(
|
||||
n_classes,
|
||||
weight_column=weight_column,
|
||||
|
|
|
@ -41,6 +41,7 @@ class DNNClassifier(tf.estimator.Estimator):
|
|||
loss_reduction=tf.compat.v1.losses.Reduction.SUM,
|
||||
batch_norm=False,
|
||||
):
|
||||
"""See `tf.compat.v1.estimator.DNNClassifier`."""
|
||||
head = head_lib._binary_logistic_or_multi_class_head( # pylint: disable=protected-access
|
||||
n_classes, weight_column, label_vocabulary, loss_reduction)
|
||||
estimator._canned_estimator_api_gauge.get_cell('Classifier').set('DNN')
|
||||
|
|
|
@ -19,8 +19,8 @@ import tensorflow as tf
|
|||
def make_dp_model_class(cls):
|
||||
"""Given a subclass of `tf.keras.Model`, returns a DP-SGD version of it."""
|
||||
|
||||
class DPModelClass(cls):
|
||||
"""A DP version of `cls`, which should be a subclass of `tf.keras.Model`."""
|
||||
class DPModelClass(cls): # pylint: disable=empty-docstring
|
||||
__doc__ = ('DP subclass of `tf.keras.{}`.').format(cls.__name__)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
|
@ -37,6 +37,9 @@ def make_dp_model_class(cls):
|
|||
noise_multiplier: Ratio of the standard deviation to the clipping
|
||||
norm.
|
||||
use_xla: If `True`, compiles train_step to XLA.
|
||||
*args: These will be passed on to the base class `__init__` method.
|
||||
**kwargs: These will be passed on to the base class `__init__`
|
||||
method.
|
||||
"""
|
||||
super(DPModelClass, self).__init__(*args, **kwargs)
|
||||
self._l2_norm_clip = l2_norm_clip
|
||||
|
@ -78,6 +81,7 @@ def make_dp_model_class(cls):
|
|||
return tf.squeeze(y_pred, axis=0), loss, clipped_grads
|
||||
|
||||
def train_step(self, data):
|
||||
"""DP-SGD version of base class method."""
|
||||
_, y = data
|
||||
y_pred, _, per_eg_grads = tf.vectorized_map(
|
||||
self._compute_per_example_grads, data)
|
||||
|
@ -87,8 +91,6 @@ def make_dp_model_class(cls):
|
|||
self.compiled_metrics.update_state(y, y_pred)
|
||||
return {m.name: m.result() for m in self.metrics}
|
||||
|
||||
DPModelClass.__doc__ = ('DP subclass of `tf.keras.{}`.').format(cls.__name__)
|
||||
|
||||
return DPModelClass
|
||||
|
||||
|
||||
|
|
|
@ -26,7 +26,15 @@ from tensorflow_privacy.privacy.dp_query import gaussian_query
|
|||
|
||||
|
||||
def make_optimizer_class(cls):
|
||||
"""Constructs a DP optimizer class from an existing one."""
|
||||
"""Given a subclass of `tf.compat.v1.train.Optimizer`, returns a DP-SGD subclass of it.
|
||||
|
||||
Args:
|
||||
cls: Class from which to derive a DP subclass. Should be a subclass of
|
||||
`tf.compat.v1.train.Optimizer`.
|
||||
|
||||
Returns:
|
||||
A DP-SGD subclass of `cls`.
|
||||
"""
|
||||
parent_code = tf.train.Optimizer.compute_gradients.__code__
|
||||
|
||||
has_compute_gradients = hasattr(cls, 'compute_gradients')
|
||||
|
@ -40,8 +48,8 @@ def make_optimizer_class(cls):
|
|||
'make_optimizer_class() does not interfere with overridden version.',
|
||||
cls.__name__)
|
||||
|
||||
class DPOptimizerClass(cls):
|
||||
"""Differentially private subclass of given class cls."""
|
||||
class DPOptimizerClass(cls): # pylint: disable=empty-docstring
|
||||
__doc__ = ('DP subclass of `tf.compat.v1.train.{}`.').format(cls.__name__)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
|
@ -50,7 +58,7 @@ def make_optimizer_class(cls):
|
|||
unroll_microbatches=False,
|
||||
*args, # pylint: disable=keyword-arg-before-vararg, g-doc-args
|
||||
**kwargs):
|
||||
"""Initialize the DPOptimizerClass.
|
||||
"""Initializes the DPOptimizerClass.
|
||||
|
||||
Args:
|
||||
dp_sum_query: `DPQuery` object, specifying differential privacy
|
||||
|
@ -61,6 +69,8 @@ def make_optimizer_class(cls):
|
|||
unroll_microbatches: If true, processes microbatches within a Python
|
||||
loop instead of a `tf.while_loop`. Can be used if using a
|
||||
`tf.while_loop` raises an exception.
|
||||
*args: These will be passed on to the base class `__init__` method.
|
||||
**kwargs: These will be passed on to the base class `__init__` method.
|
||||
"""
|
||||
super(DPOptimizerClass, self).__init__(*args, **kwargs)
|
||||
self._dp_sum_query = dp_sum_query
|
||||
|
@ -80,6 +90,7 @@ def make_optimizer_class(cls):
|
|||
colocate_gradients_with_ops=False,
|
||||
grad_loss=None,
|
||||
gradient_tape=None):
|
||||
"""DP-SGD version of base class method."""
|
||||
self._was_compute_gradients_called = True
|
||||
if self._global_state is None:
|
||||
self._global_state = self._dp_sum_query.initial_global_state()
|
||||
|
@ -124,7 +135,7 @@ def make_optimizer_class(cls):
|
|||
return grads_and_vars
|
||||
|
||||
else:
|
||||
# TF is running in graph mode, check we did not receive a gradient tape.
|
||||
# TF is running in graph mode. Check we did not receive a gradient tape.
|
||||
if gradient_tape:
|
||||
raise ValueError('When in graph mode, a tape should not be passed.')
|
||||
|
||||
|
@ -197,6 +208,8 @@ def make_optimizer_class(cls):
|
|||
return list(zip(final_grads, var_list))
|
||||
|
||||
def apply_gradients(self, grads_and_vars, global_step=None, name=None):
|
||||
# pylint: disable=g-doc-args, g-doc-return-or-yield
|
||||
"""DP-SGD version of base class method."""
|
||||
assert self._was_compute_gradients_called, (
|
||||
'compute_gradients() on the differentially private optimizer was not'
|
||||
' called. Which means that the training is not differentially '
|
||||
|
@ -205,17 +218,24 @@ def make_optimizer_class(cls):
|
|||
return super(DPOptimizerClass,
|
||||
self).apply_gradients(grads_and_vars, global_step, name)
|
||||
|
||||
DPOptimizerClass.__doc__ = ('DP subclass of `tf.compat.v1.train.{}`.').format(
|
||||
cls.__name__)
|
||||
|
||||
return DPOptimizerClass
|
||||
|
||||
|
||||
def make_gaussian_optimizer_class(cls):
|
||||
"""Constructs a DP optimizer with Gaussian averaging of updates."""
|
||||
"""Given a subclass of `tf.compat.v1.train.Optimizer`, returns a subclass using DP-SGD with Gaussian averaging.
|
||||
|
||||
class DPGaussianOptimizerClass(make_optimizer_class(cls)):
|
||||
"""DP subclass of given class cls using Gaussian averaging."""
|
||||
Args:
|
||||
cls: Class from which to derive a DP subclass. Should be a subclass of
|
||||
`tf.compat.v1.train.Optimizer`.
|
||||
|
||||
Returns:
|
||||
A subclass of `cls` using DP-SGD with Gaussian averaging.
|
||||
"""
|
||||
|
||||
class DPGaussianOptimizerClass(make_optimizer_class(cls)): # pylint: disable=empty-docstring
|
||||
__doc__ = (
|
||||
'DP subclass of `tf.compat.v1.train.{}` using Gaussian averaging.'
|
||||
).format(cls.__name__)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
|
@ -226,6 +246,21 @@ def make_gaussian_optimizer_class(cls):
|
|||
unroll_microbatches=False,
|
||||
*args, # pylint: disable=keyword-arg-before-vararg
|
||||
**kwargs):
|
||||
"""Initializes the `DPGaussianOptimizerClass`.
|
||||
|
||||
Args:
|
||||
l2_norm_clip: Clipping norm (max L2 norm of per microbatch gradients).
|
||||
noise_multiplier: Ratio of the standard deviation to the clipping norm.
|
||||
num_microbatches: Number of microbatches into which each minibatch is
|
||||
split. If `None`, will default to the size of the minibatch, and
|
||||
per-example gradients will be computed.
|
||||
ledger: Defaults to `None`. An instance of `tf_privacy.PrivacyLedger`.
|
||||
unroll_microbatches: If true, processes microbatches within a Python
|
||||
loop instead of a `tf.while_loop`. Can be used if using a
|
||||
`tf.while_loop` raises an exception.
|
||||
*args: These will be passed on to the base class `__init__` method.
|
||||
**kwargs: These will be passed on to the base class `__init__` method.
|
||||
"""
|
||||
self._l2_norm_clip = l2_norm_clip
|
||||
self._noise_multiplier = noise_multiplier
|
||||
self._num_microbatches = num_microbatches
|
||||
|
@ -268,10 +303,6 @@ def make_gaussian_optimizer_class(cls):
|
|||
def ledger(self):
|
||||
return self._dp_sum_query.ledger
|
||||
|
||||
DPGaussianOptimizerClass.__doc__ = (
|
||||
'DP subclass of `tf.train.{}` using Gaussian averaging.').format(
|
||||
cls.__name__)
|
||||
|
||||
return DPGaussianOptimizerClass
|
||||
|
||||
AdagradOptimizer = tf.train.AdagradOptimizer
|
||||
|
|
|
@ -24,10 +24,18 @@ from tensorflow_privacy.privacy.dp_query import gaussian_query
|
|||
|
||||
|
||||
def make_keras_optimizer_class(cls):
|
||||
"""Constructs a DP Keras optimizer class from an existing one."""
|
||||
"""Given a subclass of `tf.keras.optimizers.Optimizer`, returns a DP-SGD subclass of it.
|
||||
|
||||
class DPOptimizerClass(cls):
|
||||
"""Differentially private subclass of given class cls.
|
||||
Args:
|
||||
cls: Class from which to derive a DP subclass. Should be a subclass of
|
||||
`tf.keras.optimizers.Optimizer`.
|
||||
|
||||
Returns:
|
||||
A DP-SGD subclass of `cls`.
|
||||
"""
|
||||
|
||||
class DPOptimizerClass(cls): # pylint: disable=empty-docstring
|
||||
__doc__ = """Differentially private subclass of given class `tf.keras.optimizers.{}.
|
||||
|
||||
The class tf.keras.optimizers.Optimizer has two methods to compute
|
||||
gradients, `_compute_gradients` and `get_gradients`. The first works
|
||||
|
@ -37,7 +45,7 @@ def make_keras_optimizer_class(cls):
|
|||
Internally, DPOptimizerClass stores hyperparameters both individually
|
||||
and encapsulated in a `GaussianSumQuery` object for these two use cases.
|
||||
However, this should be invisible to users of this class.
|
||||
"""
|
||||
""".format(cls.__name__)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
|
@ -53,6 +61,8 @@ def make_keras_optimizer_class(cls):
|
|||
noise_multiplier: Ratio of the standard deviation to the clipping norm.
|
||||
num_microbatches: Number of microbatches into which each minibatch
|
||||
is split.
|
||||
*args: These will be passed on to the base class `__init__` method.
|
||||
**kwargs: These will be passed on to the base class `__init__` method.
|
||||
"""
|
||||
super(DPOptimizerClass, self).__init__(*args, **kwargs)
|
||||
self._l2_norm_clip = l2_norm_clip
|
||||
|
@ -64,7 +74,7 @@ def make_keras_optimizer_class(cls):
|
|||
self._was_dp_gradients_called = False
|
||||
|
||||
def _compute_gradients(self, loss, var_list, grad_loss=None, tape=None):
|
||||
"""DP version of superclass method."""
|
||||
"""DP-SGD version of base class method."""
|
||||
|
||||
self._was_dp_gradients_called = True
|
||||
# Compute loss.
|
||||
|
@ -120,7 +130,7 @@ def make_keras_optimizer_class(cls):
|
|||
return list(zip(final_gradients, var_list))
|
||||
|
||||
def get_gradients(self, loss, params):
|
||||
"""DP version of superclass method."""
|
||||
"""DP-SGD version of base class method."""
|
||||
|
||||
self._was_dp_gradients_called = True
|
||||
if self._global_state is None:
|
||||
|
@ -160,6 +170,7 @@ def make_keras_optimizer_class(cls):
|
|||
return final_grads
|
||||
|
||||
def apply_gradients(self, grads_and_vars, global_step=None, name=None):
|
||||
"""DP-SGD version of base class method."""
|
||||
assert self._was_dp_gradients_called, (
|
||||
'Neither _compute_gradients() or get_gradients() on the '
|
||||
'differentially private optimizer was called. This means the '
|
||||
|
@ -169,10 +180,6 @@ def make_keras_optimizer_class(cls):
|
|||
return super(DPOptimizerClass,
|
||||
self).apply_gradients(grads_and_vars, global_step, name)
|
||||
|
||||
DPOptimizerClass.__doc__ = (
|
||||
'DP subclass of `tf.keras.optimizers.{}` using Gaussian averaging.'
|
||||
).format(cls.__name__)
|
||||
|
||||
return DPOptimizerClass
|
||||
|
||||
|
||||
|
|
|
@ -37,10 +37,18 @@ def clip_gradients_vmap(g, l2_norm_clip):
|
|||
|
||||
|
||||
def make_vectorized_keras_optimizer_class(cls):
|
||||
"""Constructs a DP Keras optimizer class from an existing one."""
|
||||
"""Given a subclass of `tf.keras.optimizers.Optimizer`, returns a vectorized DP-SGD subclass of it.
|
||||
|
||||
class DPOptimizerClass(cls):
|
||||
"""Differentially private subclass of given class cls.
|
||||
Args:
|
||||
cls: Class from which to derive a DP subclass. Should be a subclass of
|
||||
`tf.keras.optimizers.Optimizer`.
|
||||
|
||||
Returns:
|
||||
A vectorized DP-SGD subclass of `cls`.
|
||||
"""
|
||||
|
||||
class DPOptimizerClass(cls): # pylint: disable=empty-docstring
|
||||
__doc__ = """Vectorized differentially private subclass of given class `tf.keras.optimizers.{}.
|
||||
|
||||
The class tf.keras.optimizers.Optimizer has two methods to compute
|
||||
gradients, `_compute_gradients` and `get_gradients`. The first works
|
||||
|
@ -50,7 +58,7 @@ def make_vectorized_keras_optimizer_class(cls):
|
|||
Internally, DPOptimizerClass stores hyperparameters both individually
|
||||
and encapsulated in a `GaussianSumQuery` object for these two use cases.
|
||||
However, this should be invisible to users of this class.
|
||||
"""
|
||||
""".format(cls.__name__)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
|
@ -66,6 +74,8 @@ def make_vectorized_keras_optimizer_class(cls):
|
|||
noise_multiplier: Ratio of the standard deviation to the clipping norm.
|
||||
num_microbatches: Number of microbatches into which each minibatch
|
||||
is split.
|
||||
*args: These will be passed on to the base class `__init__` method.
|
||||
**kwargs: These will be passed on to the base class `__init__` method.
|
||||
"""
|
||||
super(DPOptimizerClass, self).__init__(*args, **kwargs)
|
||||
self._l2_norm_clip = l2_norm_clip
|
||||
|
@ -77,7 +87,7 @@ def make_vectorized_keras_optimizer_class(cls):
|
|||
self._was_dp_gradients_called = False
|
||||
|
||||
def _compute_gradients(self, loss, var_list, grad_loss=None, tape=None):
|
||||
"""DP version of superclass method."""
|
||||
"""DP-SGD version of base class method."""
|
||||
|
||||
self._was_dp_gradients_called = True
|
||||
# Compute loss.
|
||||
|
@ -130,7 +140,7 @@ def make_vectorized_keras_optimizer_class(cls):
|
|||
return list(zip(final_gradients, var_list))
|
||||
|
||||
def get_gradients(self, loss, params):
|
||||
"""DP version of superclass method."""
|
||||
"""DP-SGD version of base class method."""
|
||||
|
||||
self._was_dp_gradients_called = True
|
||||
if self._global_state is None:
|
||||
|
@ -168,6 +178,8 @@ def make_vectorized_keras_optimizer_class(cls):
|
|||
return final_grads
|
||||
|
||||
def apply_gradients(self, grads_and_vars, global_step=None, name=None):
|
||||
"""DP-SGD version of base class method."""
|
||||
|
||||
assert self._was_dp_gradients_called, (
|
||||
'Neither _compute_gradients() or get_gradients() on the '
|
||||
'differentially private optimizer was called. This means the '
|
||||
|
@ -177,9 +189,6 @@ def make_vectorized_keras_optimizer_class(cls):
|
|||
return super(DPOptimizerClass,
|
||||
self).apply_gradients(grads_and_vars, global_step, name)
|
||||
|
||||
DPOptimizerClass.__doc__ = (
|
||||
'Vectorized DP subclass of `tf.keras.optimizers.{}` using Gaussian '
|
||||
'averaging.').format(cls.__name__)
|
||||
return DPOptimizerClass
|
||||
|
||||
|
||||
|
|
|
@ -29,7 +29,15 @@ GATE_OP = tf.train.Optimizer.GATE_OP # pylint: disable=invalid-name
|
|||
|
||||
|
||||
def make_vectorized_optimizer_class(cls):
|
||||
"""Constructs a vectorized DP optimizer class from an existing one."""
|
||||
"""Given a subclass of `tf.compat.v1.train.Optimizer`, returns a vectorized DP-SGD subclass of it.
|
||||
|
||||
Args:
|
||||
cls: Class from which to derive a DP subclass. Should be a subclass of
|
||||
`tf.compat.v1.train.Optimizer`.
|
||||
|
||||
Returns:
|
||||
A DP-SGD subclass of `cls`.
|
||||
"""
|
||||
child_code = cls.compute_gradients.__code__
|
||||
if child_code is not parent_code:
|
||||
logging.warning(
|
||||
|
@ -38,8 +46,11 @@ def make_vectorized_optimizer_class(cls):
|
|||
'make_optimizer_class() does not interfere with overridden version.',
|
||||
cls.__name__)
|
||||
|
||||
class DPOptimizerClass(cls):
|
||||
"""Differentially private subclass of given class cls."""
|
||||
class DPOptimizerClass(cls): # pylint: disable=empty-docstring
|
||||
__doc__ = (
|
||||
'Vectorized DP subclass of `tf.compat.v1.train.{}` using Gaussian '
|
||||
'averaging.'
|
||||
).format(cls.__name__)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
|
@ -56,6 +67,8 @@ def make_vectorized_optimizer_class(cls):
|
|||
num_microbatches: Number of microbatches into which each minibatch is
|
||||
split. If `None`, will default to the size of the minibatch, and
|
||||
per-example gradients will be computed.
|
||||
*args: These will be passed on to the base class `__init__` method.
|
||||
**kwargs: These will be passed on to the base class `__init__` method.
|
||||
"""
|
||||
super(DPOptimizerClass, self).__init__(*args, **kwargs)
|
||||
self._l2_norm_clip = l2_norm_clip
|
||||
|
@ -70,6 +83,7 @@ def make_vectorized_optimizer_class(cls):
|
|||
colocate_gradients_with_ops=False,
|
||||
grad_loss=None,
|
||||
gradient_tape=None):
|
||||
"""DP-SGD version of base class method."""
|
||||
if callable(loss):
|
||||
# TF is running in Eager mode
|
||||
raise NotImplementedError('Vectorized optimizer unavailable for TF2.')
|
||||
|
@ -136,9 +150,6 @@ def make_vectorized_optimizer_class(cls):
|
|||
|
||||
return list(zip(final_grads, var_list))
|
||||
|
||||
DPOptimizerClass.__doc__ = (
|
||||
'Vectorized DP subclass of `tf.compat.v1.train.{}` using '
|
||||
'Gaussian averaging.').format(cls.__name__)
|
||||
return DPOptimizerClass
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue