diff --git a/tutorials/mnist_dpsgd_tutorial.py b/tutorials/mnist_dpsgd_tutorial.py index 9afe8df..bd89085 100644 --- a/tutorials/mnist_dpsgd_tutorial.py +++ b/tutorials/mnist_dpsgd_tutorial.py @@ -60,7 +60,7 @@ def cnn_model_fn(features, labels, mode): logits = tf.keras.layers.Dense(10, kernel_initializer='he_normal').apply(y) # Calculate loss as a vector (to support microbatches in DP-SGD). - vector_loss = tf.nn.softmax_cross_entropy_with_logits_v2( + vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=labels, logits=logits) # Define mean of loss across minibatch (for reporting through tf.Estimator). scalar_loss = tf.reduce_mean(vector_loss) @@ -99,7 +99,7 @@ def cnn_model_fn(features, labels, mode): eval_metric_ops = { 'accuracy': tf.metrics.accuracy( - labels=tf.argmax(labels, axis=1), + labels=labels, predictions=tf.argmax(input=logits, axis=1)) } return tf.estimator.EstimatorSpec(mode=mode, @@ -116,15 +116,15 @@ def load_mnist(): train_data = np.array(train_data, dtype=np.float32) / 255 test_data = np.array(test_data, dtype=np.float32) / 255 - train_labels = tf.keras.utils.to_categorical(train_labels) - test_labels = tf.keras.utils.to_categorical(test_labels) + train_labels = np.array(train_labels, dtype=np.int32) + test_labels = np.array(test_labels, dtype=np.int32) assert train_data.min() == 0. assert train_data.max() == 1. assert test_data.min() == 0. assert test_data.max() == 1. - assert train_labels.shape[1] == 10 - assert test_labels.shape[1] == 10 + assert len(train_labels.shape) == 1 + assert len(test_labels.shape) == 1 return train_data, train_labels, test_data, test_labels