forked from 626_privacy/tensorflow_privacy
Cleanup directory structure, add top-level imports and add normalized_query.
Moved query classes from dir optimizers into new dir dp_query. Added NormalizedQuery class for queries that divide the output of another query by a constant like GaussianAverageQuery. PiperOrigin-RevId: 240167115
This commit is contained in:
parent
3c1e9994eb
commit
6231d0802d
17 changed files with 305 additions and 80 deletions
|
@ -0,0 +1,38 @@
|
||||||
|
# Copyright 2019, The TensorFlow Privacy Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""TensorFlow Privacy library."""
|
||||||
|
|
||||||
|
from __future__ import absolute_import
|
||||||
|
from __future__ import division
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
from privacy.analysis.privacy_ledger import GaussianSumQueryEntry
|
||||||
|
from privacy.analysis.privacy_ledger import PrivacyLedger
|
||||||
|
from privacy.analysis.privacy_ledger import QueryWithLedger
|
||||||
|
from privacy.analysis.privacy_ledger import SampleEntry
|
||||||
|
|
||||||
|
from privacy.dp_query.dp_query import DPQuery
|
||||||
|
from privacy.dp_query.gaussian_query import GaussianAverageQuery
|
||||||
|
from privacy.dp_query.gaussian_query import GaussianSumQuery
|
||||||
|
from privacy.dp_query.nested_query import NestedQuery
|
||||||
|
from privacy.dp_query.no_privacy_query import NoPrivacyAverageQuery
|
||||||
|
from privacy.dp_query.no_privacy_query import NoPrivacySumQuery
|
||||||
|
from privacy.dp_query.normalized_query import NormalizedQuery
|
||||||
|
|
||||||
|
from privacy.optimizers.dp_optimizer import DPAdagradGaussianOptimizer
|
||||||
|
from privacy.optimizers.dp_optimizer import DPAdagradOptimizer
|
||||||
|
from privacy.optimizers.dp_optimizer import DPAdamGaussianOptimizer
|
||||||
|
from privacy.optimizers.dp_optimizer import DPAdamOptimizer
|
||||||
|
from privacy.optimizers.dp_optimizer import DPGradientDescentGaussianOptimizer
|
||||||
|
from privacy.optimizers.dp_optimizer import DPGradientDescentOptimizer
|
|
@ -25,7 +25,7 @@ from distutils.version import LooseVersion
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
|
||||||
from privacy.analysis import tensor_buffer
|
from privacy.analysis import tensor_buffer
|
||||||
from privacy.optimizers import dp_query
|
from privacy.dp_query import dp_query
|
||||||
|
|
||||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||||
nest = tf.contrib.framework.nest
|
nest = tf.contrib.framework.nest
|
||||||
|
|
|
@ -21,9 +21,9 @@ from __future__ import print_function
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
|
||||||
from privacy.analysis import privacy_ledger
|
from privacy.analysis import privacy_ledger
|
||||||
from privacy.optimizers import gaussian_query
|
from privacy.dp_query import gaussian_query
|
||||||
from privacy.optimizers import nested_query
|
from privacy.dp_query import nested_query
|
||||||
from privacy.optimizers import test_utils
|
from privacy.dp_query import test_utils
|
||||||
|
|
||||||
tf.enable_eager_execution()
|
tf.enable_eager_execution()
|
||||||
|
|
||||||
|
|
96
privacy/dp_query/BUILD
Normal file
96
privacy/dp_query/BUILD
Normal file
|
@ -0,0 +1,96 @@
|
||||||
|
package(default_visibility = ["//visibility:public"])
|
||||||
|
|
||||||
|
licenses(["notice"]) # Apache 2.0
|
||||||
|
|
||||||
|
py_library(
|
||||||
|
name = "dp_query",
|
||||||
|
srcs = ["dp_query.py"],
|
||||||
|
)
|
||||||
|
|
||||||
|
py_library(
|
||||||
|
name = "gaussian_query",
|
||||||
|
srcs = ["gaussian_query.py"],
|
||||||
|
deps = [
|
||||||
|
":dp_query",
|
||||||
|
":normalized_query",
|
||||||
|
"//third_party/py/tensorflow",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
py_test(
|
||||||
|
name = "gaussian_query_test",
|
||||||
|
srcs = ["gaussian_query_test.py"],
|
||||||
|
deps = [
|
||||||
|
":gaussian_query",
|
||||||
|
":test_utils",
|
||||||
|
"//third_party/py/absl/testing:parameterized",
|
||||||
|
"//third_party/py/tensorflow",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
py_library(
|
||||||
|
name = "no_privacy_query",
|
||||||
|
srcs = ["no_privacy_query.py"],
|
||||||
|
deps = [
|
||||||
|
":dp_query",
|
||||||
|
"//third_party/py/tensorflow",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
py_test(
|
||||||
|
name = "no_privacy_query_test",
|
||||||
|
srcs = ["no_privacy_query_test.py"],
|
||||||
|
deps = [
|
||||||
|
":no_privacy_query",
|
||||||
|
":test_utils",
|
||||||
|
"//third_party/py/absl/testing:parameterized",
|
||||||
|
"//third_party/py/tensorflow",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
py_library(
|
||||||
|
name = "normalized_query",
|
||||||
|
srcs = ["normalized_query.py"],
|
||||||
|
deps = [
|
||||||
|
":dp_query",
|
||||||
|
"//third_party/py/tensorflow",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
py_test(
|
||||||
|
name = "normalized_query_test",
|
||||||
|
srcs = ["normalized_query_test.py"],
|
||||||
|
deps = [
|
||||||
|
":gaussian_query",
|
||||||
|
":normalized_query",
|
||||||
|
":test_utils",
|
||||||
|
"//third_party/py/tensorflow",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
py_library(
|
||||||
|
name = "nested_query",
|
||||||
|
srcs = ["nested_query.py"],
|
||||||
|
deps = [
|
||||||
|
":dp_query",
|
||||||
|
"//third_party/py/tensorflow",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
py_test(
|
||||||
|
name = "nested_query_test",
|
||||||
|
srcs = ["nested_query_test.py"],
|
||||||
|
deps = [
|
||||||
|
":gaussian_query",
|
||||||
|
":nested_query",
|
||||||
|
":test_utils",
|
||||||
|
"//third_party/py/absl/testing:parameterized",
|
||||||
|
"//third_party/py/tensorflow",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
py_library(
|
||||||
|
name = "test_utils",
|
||||||
|
srcs = ["test_utils.py"],
|
||||||
|
deps = [],
|
||||||
|
)
|
|
@ -22,7 +22,8 @@ from __future__ import print_function
|
||||||
from distutils.version import LooseVersion
|
from distutils.version import LooseVersion
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
|
||||||
from privacy.optimizers import dp_query
|
from privacy.dp_query import dp_query
|
||||||
|
from privacy.dp_query import normalized_query
|
||||||
|
|
||||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||||
nest = tf.contrib.framework.nest
|
nest = tf.contrib.framework.nest
|
||||||
|
@ -132,7 +133,7 @@ class GaussianSumQuery(dp_query.DPQuery):
|
||||||
return nest.map_structure(add_noise, sample_state), global_state
|
return nest.map_structure(add_noise, sample_state), global_state
|
||||||
|
|
||||||
|
|
||||||
class GaussianAverageQuery(dp_query.DPQuery):
|
class GaussianAverageQuery(normalized_query.NormalizedQuery):
|
||||||
"""Implements DPQuery interface for Gaussian average queries.
|
"""Implements DPQuery interface for Gaussian average queries.
|
||||||
|
|
||||||
Accumulates clipped vectors, adds Gaussian noise, and normalizes.
|
Accumulates clipped vectors, adds Gaussian noise, and normalizes.
|
||||||
|
@ -159,65 +160,6 @@ class GaussianAverageQuery(dp_query.DPQuery):
|
||||||
the sum).
|
the sum).
|
||||||
ledger: The privacy ledger to which queries should be recorded.
|
ledger: The privacy ledger to which queries should be recorded.
|
||||||
"""
|
"""
|
||||||
self._numerator = GaussianSumQuery(l2_norm_clip, sum_stddev, ledger)
|
super(GaussianAverageQuery, self).__init__(
|
||||||
self._denominator = tf.to_float(denominator)
|
numerator_query=GaussianSumQuery(l2_norm_clip, sum_stddev, ledger),
|
||||||
|
denominator=tf.to_float(denominator))
|
||||||
def initial_global_state(self):
|
|
||||||
"""Returns the initial global state for the GaussianAverageQuery."""
|
|
||||||
# GaussianAverageQuery has no global state beyond the numerator state.
|
|
||||||
return self._numerator.initial_global_state()
|
|
||||||
|
|
||||||
def derive_sample_params(self, global_state):
|
|
||||||
"""Given the global state, derives parameters to use for the next sample.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
global_state: The current global state.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Parameters to use to process records in the next sample.
|
|
||||||
"""
|
|
||||||
return self._numerator.derive_sample_params(global_state)
|
|
||||||
|
|
||||||
def initial_sample_state(self, global_state, tensors):
|
|
||||||
"""Returns an initial state to use for the next sample.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
global_state: The current global state.
|
|
||||||
tensors: A structure of tensors used as a template to create the initial
|
|
||||||
sample state.
|
|
||||||
|
|
||||||
Returns: An initial sample state.
|
|
||||||
"""
|
|
||||||
# GaussianAverageQuery has no sample state beyond the sum state.
|
|
||||||
return self._numerator.initial_sample_state(global_state, tensors)
|
|
||||||
|
|
||||||
def accumulate_record(self, params, sample_state, record):
|
|
||||||
"""Accumulates a single record into the sample state.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
params: The parameters for the sample.
|
|
||||||
sample_state: The current sample state.
|
|
||||||
record: The record to accumulate.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
The updated sample state.
|
|
||||||
"""
|
|
||||||
return self._numerator.accumulate_record(params, sample_state, record)
|
|
||||||
|
|
||||||
def get_noised_result(self, sample_state, global_state):
|
|
||||||
"""Gets noised average after all records of sample have been accumulated.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
sample_state: The sample state after all records have been accumulated.
|
|
||||||
global_state: The global state.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
A tuple (estimate, new_global_state) where "estimate" is the estimated
|
|
||||||
average of the records and "new_global_state" is the updated global state.
|
|
||||||
"""
|
|
||||||
noised_sum, new_sum_global_state = self._numerator.get_noised_result(
|
|
||||||
sample_state, global_state)
|
|
||||||
def normalize(v):
|
|
||||||
return tf.truediv(v, self._denominator)
|
|
||||||
|
|
||||||
return nest.map_structure(normalize, noised_sum), new_sum_global_state
|
|
|
@ -23,8 +23,8 @@ import numpy as np
|
||||||
from six.moves import xrange
|
from six.moves import xrange
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
|
||||||
from privacy.optimizers import gaussian_query
|
from privacy.dp_query import gaussian_query
|
||||||
from privacy.optimizers import test_utils
|
from privacy.dp_query import test_utils
|
||||||
|
|
||||||
|
|
||||||
class GaussianQueryTest(tf.test.TestCase, parameterized.TestCase):
|
class GaussianQueryTest(tf.test.TestCase, parameterized.TestCase):
|
|
@ -22,7 +22,7 @@ from __future__ import print_function
|
||||||
from distutils.version import LooseVersion
|
from distutils.version import LooseVersion
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
|
||||||
from privacy.optimizers import dp_query
|
from privacy.dp_query import dp_query
|
||||||
|
|
||||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||||
nest = tf.contrib.framework.nest
|
nest = tf.contrib.framework.nest
|
|
@ -24,9 +24,9 @@ from distutils.version import LooseVersion
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
|
||||||
from privacy.optimizers import gaussian_query
|
from privacy.dp_query import gaussian_query
|
||||||
from privacy.optimizers import nested_query
|
from privacy.dp_query import nested_query
|
||||||
from privacy.optimizers import test_utils
|
from privacy.dp_query import test_utils
|
||||||
|
|
||||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||||
nest = tf.contrib.framework.nest
|
nest = tf.contrib.framework.nest
|
|
@ -20,7 +20,7 @@ from __future__ import print_function
|
||||||
from distutils.version import LooseVersion
|
from distutils.version import LooseVersion
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
|
||||||
from privacy.optimizers import dp_query
|
from privacy.dp_query import dp_query
|
||||||
|
|
||||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||||
nest = tf.contrib.framework.nest
|
nest = tf.contrib.framework.nest
|
|
@ -21,8 +21,8 @@ from __future__ import print_function
|
||||||
from absl.testing import parameterized
|
from absl.testing import parameterized
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
|
||||||
from privacy.optimizers import no_privacy_query
|
from privacy.dp_query import no_privacy_query
|
||||||
from privacy.optimizers import test_utils
|
from privacy.dp_query import test_utils
|
||||||
|
|
||||||
|
|
||||||
class NoPrivacyQueryTest(tf.test.TestCase, parameterized.TestCase):
|
class NoPrivacyQueryTest(tf.test.TestCase, parameterized.TestCase):
|
102
privacy/dp_query/normalized_query.py
Normal file
102
privacy/dp_query/normalized_query.py
Normal file
|
@ -0,0 +1,102 @@
|
||||||
|
# Copyright 2019, The TensorFlow Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""Implements DPQuery interface for normalized queries.
|
||||||
|
"""
|
||||||
|
|
||||||
|
from __future__ import absolute_import
|
||||||
|
from __future__ import division
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import tensorflow as tf
|
||||||
|
|
||||||
|
from privacy.dp_query import dp_query
|
||||||
|
|
||||||
|
nest = tf.contrib.framework.nest
|
||||||
|
|
||||||
|
|
||||||
|
class NormalizedQuery(dp_query.DPQuery):
|
||||||
|
"""DPQuery for queries with a DPQuery numerator and fixed denominator."""
|
||||||
|
|
||||||
|
def __init__(self, numerator_query, denominator):
|
||||||
|
"""Initializer for NormalizedQuery.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
numerator_query: A DPQuery for the numerator.
|
||||||
|
denominator: A value for the denominator.
|
||||||
|
"""
|
||||||
|
self._numerator = numerator_query
|
||||||
|
self._denominator = tf.to_float(denominator)
|
||||||
|
|
||||||
|
def initial_global_state(self):
|
||||||
|
"""Returns the initial global state for the NormalizedQuery."""
|
||||||
|
# NormalizedQuery has no global state beyond the numerator state.
|
||||||
|
return self._numerator.initial_global_state()
|
||||||
|
|
||||||
|
def derive_sample_params(self, global_state):
|
||||||
|
"""Given the global state, derives parameters to use for the next sample.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
global_state: The current global state.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Parameters to use to process records in the next sample.
|
||||||
|
"""
|
||||||
|
return self._numerator.derive_sample_params(global_state)
|
||||||
|
|
||||||
|
def initial_sample_state(self, global_state, tensors):
|
||||||
|
"""Returns an initial state to use for the next sample.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
global_state: The current global state.
|
||||||
|
tensors: A structure of tensors used as a template to create the initial
|
||||||
|
sample state.
|
||||||
|
|
||||||
|
Returns: An initial sample state.
|
||||||
|
"""
|
||||||
|
# NormalizedQuery has no sample state beyond the numerator state.
|
||||||
|
return self._numerator.initial_sample_state(global_state, tensors)
|
||||||
|
|
||||||
|
def accumulate_record(self, params, sample_state, record):
|
||||||
|
"""Accumulates a single record into the sample state.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params: The parameters for the sample.
|
||||||
|
sample_state: The current sample state.
|
||||||
|
record: The record to accumulate.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The updated sample state.
|
||||||
|
"""
|
||||||
|
return self._numerator.accumulate_record(params, sample_state, record)
|
||||||
|
|
||||||
|
def get_noised_result(self, sample_state, global_state):
|
||||||
|
"""Gets noised average after all records of sample have been accumulated.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
sample_state: The sample state after all records have been accumulated.
|
||||||
|
global_state: The global state.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A tuple (estimate, new_global_state) where "estimate" is the estimated
|
||||||
|
average of the records and "new_global_state" is the updated global state.
|
||||||
|
"""
|
||||||
|
noised_sum, new_sum_global_state = self._numerator.get_noised_result(
|
||||||
|
sample_state, global_state)
|
||||||
|
def normalize(v):
|
||||||
|
return tf.truediv(v, self._denominator)
|
||||||
|
|
||||||
|
return nest.map_structure(normalize, noised_sum), new_sum_global_state
|
||||||
|
|
||||||
|
|
47
privacy/dp_query/normalized_query_test.py
Normal file
47
privacy/dp_query/normalized_query_test.py
Normal file
|
@ -0,0 +1,47 @@
|
||||||
|
# Copyright 2019, The TensorFlow Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""Tests for GaussianAverageQuery."""
|
||||||
|
|
||||||
|
from __future__ import absolute_import
|
||||||
|
from __future__ import division
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import tensorflow as tf
|
||||||
|
|
||||||
|
from privacy.dp_query import gaussian_query
|
||||||
|
from privacy.dp_query import normalized_query
|
||||||
|
from privacy.dp_query import test_utils
|
||||||
|
|
||||||
|
|
||||||
|
class NormalizedQueryTest(tf.test.TestCase):
|
||||||
|
|
||||||
|
def test_normalization(self):
|
||||||
|
with self.cached_session() as sess:
|
||||||
|
record1 = tf.constant([-6.0, 8.0]) # Clipped to [-3.0, 4.0].
|
||||||
|
record2 = tf.constant([4.0, -3.0]) # Not clipped.
|
||||||
|
|
||||||
|
sum_query = gaussian_query.GaussianSumQuery(
|
||||||
|
l2_norm_clip=5.0, stddev=0.0)
|
||||||
|
query = normalized_query.NormalizedQuery(
|
||||||
|
numerator_query=sum_query, denominator=2.0)
|
||||||
|
|
||||||
|
query_result, _ = test_utils.run_query(query, [record1, record2])
|
||||||
|
result = sess.run(query_result)
|
||||||
|
expected = [0.5, 0.5]
|
||||||
|
self.assertAllClose(result, expected)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
tf.test.main()
|
|
@ -20,7 +20,7 @@ from __future__ import print_function
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
|
||||||
from privacy.analysis import privacy_ledger
|
from privacy.analysis import privacy_ledger
|
||||||
from privacy.optimizers import gaussian_query
|
from privacy.dp_query import gaussian_query
|
||||||
|
|
||||||
|
|
||||||
def make_optimizer_class(cls):
|
def make_optimizer_class(cls):
|
||||||
|
|
|
@ -22,8 +22,8 @@ import numpy as np
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
|
||||||
from privacy.analysis import privacy_ledger
|
from privacy.analysis import privacy_ledger
|
||||||
|
from privacy.dp_query import gaussian_query
|
||||||
from privacy.optimizers import dp_optimizer
|
from privacy.optimizers import dp_optimizer
|
||||||
from privacy.optimizers import gaussian_query
|
|
||||||
|
|
||||||
|
|
||||||
class DPOptimizerEagerTest(tf.test.TestCase, parameterized.TestCase):
|
class DPOptimizerEagerTest(tf.test.TestCase, parameterized.TestCase):
|
||||||
|
|
|
@ -23,8 +23,8 @@ import numpy as np
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
|
||||||
from privacy.analysis import privacy_ledger
|
from privacy.analysis import privacy_ledger
|
||||||
|
from privacy.dp_query import gaussian_query
|
||||||
from privacy.optimizers import dp_optimizer
|
from privacy.optimizers import dp_optimizer
|
||||||
from privacy.optimizers import gaussian_query
|
|
||||||
|
|
||||||
|
|
||||||
class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
|
class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
|
||||||
|
|
Loading…
Reference in a new issue