forked from 626_privacy/tensorflow_privacy
change kernel initializer to fix dpsgd=False tutorial
PiperOrigin-RevId: 230931823
This commit is contained in:
parent
4f9cc8ef3e
commit
668888c1a6
1 changed files with 4 additions and 8 deletions
|
@ -47,17 +47,13 @@ def cnn_model_fn(features, labels, mode):
|
||||||
input_layer = tf.reshape(features['x'], [-1, 28, 28, 1])
|
input_layer = tf.reshape(features['x'], [-1, 28, 28, 1])
|
||||||
y = tf.keras.layers.Conv2D(16, 8,
|
y = tf.keras.layers.Conv2D(16, 8,
|
||||||
strides=2,
|
strides=2,
|
||||||
padding='same',
|
padding='same').apply(input_layer)
|
||||||
kernel_initializer='he_normal').apply(input_layer)
|
|
||||||
y = tf.keras.layers.MaxPool2D(2, 1).apply(y)
|
y = tf.keras.layers.MaxPool2D(2, 1).apply(y)
|
||||||
y = tf.keras.layers.Conv2D(32, 4,
|
y = tf.keras.layers.Conv2D(32, 4, strides=2, padding='valid').apply(y)
|
||||||
strides=2,
|
|
||||||
padding='valid',
|
|
||||||
kernel_initializer='he_normal').apply(y)
|
|
||||||
y = tf.keras.layers.MaxPool2D(2, 1).apply(y)
|
y = tf.keras.layers.MaxPool2D(2, 1).apply(y)
|
||||||
y = tf.keras.layers.Flatten().apply(y)
|
y = tf.keras.layers.Flatten().apply(y)
|
||||||
y = tf.keras.layers.Dense(32, kernel_initializer='he_normal').apply(y)
|
y = tf.keras.layers.Dense(32).apply(y)
|
||||||
logits = tf.keras.layers.Dense(10, kernel_initializer='he_normal').apply(y)
|
logits = tf.keras.layers.Dense(10).apply(y)
|
||||||
|
|
||||||
# Calculate loss as a vector (to support microbatches in DP-SGD).
|
# Calculate loss as a vector (to support microbatches in DP-SGD).
|
||||||
vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
|
vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
|
||||||
|
|
Loading…
Reference in a new issue