Merge pull request #131 from lwsong:master

PiperOrigin-RevId: 339012372
This commit is contained in:
A. Unique TensorFlower 2020-10-26 04:24:55 -07:00
commit 67f7f35383
5 changed files with 52 additions and 3 deletions

View file

@ -114,11 +114,13 @@ class AttackType(enum.Enum):
RANDOM_FOREST = 'rf' RANDOM_FOREST = 'rf'
K_NEAREST_NEIGHBORS = 'knn' K_NEAREST_NEIGHBORS = 'knn'
THRESHOLD_ATTACK = 'threshold' THRESHOLD_ATTACK = 'threshold'
THRESHOLD_ENTROPY_ATTACK = 'threshold-entropy'
@property @property
def is_trained_attack(self): def is_trained_attack(self):
"""Returns whether this type of attack requires training a model.""" """Returns whether this type of attack requires training a model."""
return self != AttackType.THRESHOLD_ATTACK return (self != AttackType.THRESHOLD_ATTACK) and (
self != AttackType.THRESHOLD_ENTROPY_ATTACK)
def __str__(self): def __str__(self):
"""Returns LOGISTIC_REGRESSION instead of AttackType.LOGISTIC_REGRESSION.""" """Returns LOGISTIC_REGRESSION instead of AttackType.LOGISTIC_REGRESSION."""
@ -278,12 +280,16 @@ class AttackInputData:
"""Returns size of the training set.""" """Returns size of the training set."""
if self.loss_train is not None: if self.loss_train is not None:
return self.loss_train.size return self.loss_train.size
if self.entropy_train is not None:
return self.entropy_train.size
return self.logits_or_probs_train.shape[0] return self.logits_or_probs_train.shape[0]
def get_test_size(self): def get_test_size(self):
"""Returns size of the test set.""" """Returns size of the test set."""
if self.loss_test is not None: if self.loss_test is not None:
return self.loss_test.size return self.loss_test.size
if self.entropy_test is not None:
return self.entropy_test.size
return self.logits_or_probs_test.shape[0] return self.logits_or_probs_test.shape[0]
def validate(self): def validate(self):

View file

@ -41,12 +41,14 @@ def _slice_data_by_indices(data: AttackInputData, idx_train,
result.probs_train = _slice_if_not_none(data.probs_train, idx_train) result.probs_train = _slice_if_not_none(data.probs_train, idx_train)
result.labels_train = _slice_if_not_none(data.labels_train, idx_train) result.labels_train = _slice_if_not_none(data.labels_train, idx_train)
result.loss_train = _slice_if_not_none(data.loss_train, idx_train) result.loss_train = _slice_if_not_none(data.loss_train, idx_train)
result.entropy_train = _slice_if_not_none(data.entropy_train, idx_train)
# Slice test data. # Slice test data.
result.logits_test = _slice_if_not_none(data.logits_test, idx_test) result.logits_test = _slice_if_not_none(data.logits_test, idx_test)
result.probs_test = _slice_if_not_none(data.probs_test, idx_test) result.probs_test = _slice_if_not_none(data.probs_test, idx_test)
result.labels_test = _slice_if_not_none(data.labels_test, idx_test) result.labels_test = _slice_if_not_none(data.labels_test, idx_test)
result.loss_test = _slice_if_not_none(data.loss_test, idx_test) result.loss_test = _slice_if_not_none(data.loss_test, idx_test)
result.entropy_test = _slice_if_not_none(data.entropy_test, idx_test)
return result return result

View file

@ -114,6 +114,8 @@ class GetSliceTest(absltest.TestCase):
labels_test = np.array([1, 2, 0, 2]) labels_test = np.array([1, 2, 0, 2])
loss_train = np.array([2, 0.25, 4, 3]) loss_train = np.array([2, 0.25, 4, 3])
loss_test = np.array([0.5, 3.5, 7, 4.5]) loss_test = np.array([0.5, 3.5, 7, 4.5])
entropy_train = np.array([0.4, 8, 0.6, 10])
entropy_test = np.array([15, 10.5, 4.5, 0.3])
self.input_data = AttackInputData( self.input_data = AttackInputData(
logits_train=logits_train, logits_train=logits_train,
@ -123,7 +125,9 @@ class GetSliceTest(absltest.TestCase):
labels_train=labels_train, labels_train=labels_train,
labels_test=labels_test, labels_test=labels_test,
loss_train=loss_train, loss_train=loss_train,
loss_test=loss_test) loss_test=loss_test,
entropy_train=entropy_train,
entropy_test=entropy_test)
def test_slice_entire_dataset(self): def test_slice_entire_dataset(self):
entire_dataset_slice = SingleSliceSpec() entire_dataset_slice = SingleSliceSpec()
@ -159,6 +163,12 @@ class GetSliceTest(absltest.TestCase):
self.assertTrue((output.loss_train == [2, 4]).all()) self.assertTrue((output.loss_train == [2, 4]).all())
self.assertTrue((output.loss_test == [0.5]).all()) self.assertTrue((output.loss_test == [0.5]).all())
# Check entropy
self.assertLen(output.entropy_train, 2)
self.assertLen(output.entropy_test, 1)
self.assertTrue((output.entropy_train == [0.4, 0.6]).all())
self.assertTrue((output.entropy_test == [15]).all())
def test_slice_by_percentile(self): def test_slice_by_percentile(self):
percentile_slice = SingleSliceSpec(SlicingFeature.PERCENTILE, (0, 50)) percentile_slice = SingleSliceSpec(SlicingFeature.PERCENTILE, (0, 50))
output = get_slice(self.input_data, percentile_slice) output = get_slice(self.input_data, percentile_slice)

View file

@ -97,6 +97,21 @@ def _run_threshold_attack(attack_input: AttackInputData):
roc_curve=roc_curve) roc_curve=roc_curve)
def _run_threshold_entropy_attack(attack_input: AttackInputData):
fpr, tpr, thresholds = metrics.roc_curve(
np.concatenate((np.zeros(attack_input.get_train_size()),
np.ones(attack_input.get_test_size()))),
np.concatenate(
(attack_input.get_entropy_train(), attack_input.get_entropy_test())))
roc_curve = RocCurve(tpr=tpr, fpr=fpr, thresholds=thresholds)
return SingleAttackResult(
slice_spec=_get_slice_spec(attack_input),
attack_type=AttackType.THRESHOLD_ENTROPY_ATTACK,
roc_curve=roc_curve)
def _run_attack(attack_input: AttackInputData, def _run_attack(attack_input: AttackInputData,
attack_type: AttackType, attack_type: AttackType,
balance_attacker_training: bool = True): balance_attacker_training: bool = True):
@ -104,7 +119,8 @@ def _run_attack(attack_input: AttackInputData,
if attack_type.is_trained_attack: if attack_type.is_trained_attack:
return _run_trained_attack(attack_input, attack_type, return _run_trained_attack(attack_input, attack_type,
balance_attacker_training) balance_attacker_training)
if attack_type == AttackType.THRESHOLD_ENTROPY_ATTACK:
return _run_threshold_entropy_attack(attack_input)
return _run_threshold_attack(attack_input) return _run_threshold_attack(attack_input)

View file

@ -55,6 +55,12 @@ class RunAttacksTest(absltest.TestCase):
self.assertEqual(result.attack_type, AttackType.THRESHOLD_ATTACK) self.assertEqual(result.attack_type, AttackType.THRESHOLD_ATTACK)
def test_run_attack_threshold_entropy_sets_attack_type(self):
result = mia._run_attack(
get_test_input(100, 100), AttackType.THRESHOLD_ENTROPY_ATTACK)
self.assertEqual(result.attack_type, AttackType.THRESHOLD_ENTROPY_ATTACK)
def test_run_attack_threshold_calculates_correct_auc(self): def test_run_attack_threshold_calculates_correct_auc(self):
result = mia._run_attack( result = mia._run_attack(
AttackInputData( AttackInputData(
@ -64,6 +70,15 @@ class RunAttacksTest(absltest.TestCase):
np.testing.assert_almost_equal(result.roc_curve.get_auc(), 0.83, decimal=2) np.testing.assert_almost_equal(result.roc_curve.get_auc(), 0.83, decimal=2)
def test_run_attack_threshold_entropy_calculates_correct_auc(self):
result = mia._run_attack(
AttackInputData(
entropy_train=np.array([0.1, 0.2, 1.3, 0.4, 0.5, 0.6]),
entropy_test=np.array([1.1, 1.2, 1.3, 0.4, 1.5, 1.6])),
AttackType.THRESHOLD_ENTROPY_ATTACK)
np.testing.assert_almost_equal(result.roc_curve.get_auc(), 0.83, decimal=2)
def test_run_attack_by_slice(self): def test_run_attack_by_slice(self):
result = mia.run_attacks( result = mia.run_attacks(
get_test_input(100, 100), SlicingSpec(by_class=True), get_test_input(100, 100), SlicingSpec(by_class=True),