From 68651eeddcf44bcdc60c6e77f77f2cbfe256f467 Mon Sep 17 00:00:00 2001 From: "A. Unique TensorFlower" Date: Mon, 10 Aug 2020 02:50:49 -0700 Subject: [PATCH] Internal change. PiperOrigin-RevId: 325768017 --- .../data_structures_test.py | 34 +++++++++---------- 1 file changed, 17 insertions(+), 17 deletions(-) diff --git a/tensorflow_privacy/privacy/membership_inference_attack/data_structures_test.py b/tensorflow_privacy/privacy/membership_inference_attack/data_structures_test.py index d0bee52..0ab4c3a 100644 --- a/tensorflow_privacy/privacy/membership_inference_attack/data_structures_test.py +++ b/tensorflow_privacy/privacy/membership_inference_attack/data_structures_test.py @@ -196,33 +196,33 @@ class AttackResultsTest(absltest.TestCase): self.assertEqual(results.get_result_with_max_attacker_advantage(), self.perfect_classifier_result) - @absltest.skip('Will be enabled in the next CL') def test_summary_by_slices(self): results = AttackResults( [self.perfect_classifier_result, self.random_classifier_result]) self.assertEqual( - results.summary(by_slices=True), 'Highest AUC on slice ' - 'SingleSliceSpec' + - '(SlicingFeature.CORRECTLY_CLASSIFIED=True) achieved by ' + - 'AttackType.THRESHOLD_ATTACK with an AUC of 1.0\n' + - 'Highest advantage on ' + - 'slice SingleSliceSpec(SlicingFeature.CORRECTLY_CLASSIFIED=True) ' + - 'achieved by AttackType.THRESHOLD_ATTACK with an advantage of 1.0\n' + - 'Highest AUC on slice SingleSliceSpec(Entire dataset) achieved ' + - 'by AttackType.THRESHOLD_ATTACK with an AUC of 0.5\n' + - 'Highest advantage on slice SingleSliceSpec(Entire dataset) achieved ' + - 'by AttackType.THRESHOLD_ATTACK with an advantage of 0.0') + results.summary(by_slices=True), + 'Best-performing attacks over all slices\n' + + ' THRESHOLD_ATTACK achieved an AUC of 1.00 ' + + 'on slice CORRECTLY_CLASSIFIED=True\n' + + ' THRESHOLD_ATTACK achieved an advantage of 1.00 ' + + 'on slice CORRECTLY_CLASSIFIED=True\n\n' + + 'Best-performing attacks over slice: "CORRECTLY_CLASSIFIED=True"\n' + + ' THRESHOLD_ATTACK achieved an AUC of 1.00\n' + + ' THRESHOLD_ATTACK achieved an advantage of 1.00\n\n' + + 'Best-performing attacks over slice: "Entire dataset"\n' + + ' THRESHOLD_ATTACK achieved an AUC of 0.50\n' + + ' THRESHOLD_ATTACK achieved an advantage of 0.00') - @absltest.skip('Will be enabled in the next CL') def test_summary_without_slices(self): results = AttackResults( [self.perfect_classifier_result, self.random_classifier_result]) self.assertEqual( results.summary(by_slices=False), - 'Highest AUC on slice SingleSliceSpec(Entire dataset) achieved ' + - 'by AttackType.THRESHOLD_ATTACK with an AUC of 0.5\n' + - 'Highest advantage on slice SingleSliceSpec(Entire dataset) achieved ' + - 'by AttackType.THRESHOLD_ATTACK with an advantage of 0.0') + 'Best-performing attacks over all slices\n' + + ' THRESHOLD_ATTACK achieved an AUC of 1.00 ' + + 'on slice CORRECTLY_CLASSIFIED=True\n' + + ' THRESHOLD_ATTACK achieved an advantage of 1.00 ' + + 'on slice CORRECTLY_CLASSIFIED=True') def test_save_load(self): results = AttackResults(