diff --git a/tensorflow_privacy/privacy/keras_models/dp_keras_model.py b/tensorflow_privacy/privacy/keras_models/dp_keras_model.py index 99b92c9..6565082 100644 --- a/tensorflow_privacy/privacy/keras_models/dp_keras_model.py +++ b/tensorflow_privacy/privacy/keras_models/dp_keras_model.py @@ -27,7 +27,7 @@ def make_dp_model_class(cls): noise = tf.random.normal( tf.shape(input=summed_grads), stddev=noise_stddev) noised_grads = summed_grads + noise - return noised_grads / tf.cast(stacked_grads.shape[0], noised_grads.dtype) + return noised_grads / tf.cast(stacked_grads.shape[0], tf.float32) def compute_per_example_grads(self, data): x, y = data @@ -35,23 +35,24 @@ def make_dp_model_class(cls): # We need to add the extra dimension to x and y because model # expects batched input. y_pred = self(x[None], training=True) - loss = self.compiled_loss(y[None], y_pred, + loss = self.compiled_loss(y[None], y_pred, regularization_losses=self.losses) - + grads_list = tape.gradient(loss, self.trainable_variables) clipped_grads = self.process_per_example_grads(grads_list) return tf.squeeze(y_pred, axis=0), loss, clipped_grads - + def train_step(self, data): x, y = data y_pred, per_eg_loss, per_eg_grads = tf.vectorized_map( self.compute_per_example_grads, data) loss = tf.reduce_mean(per_eg_loss, axis=0) - grads = tf.nest.map_structure(self.reduce_per_example_grads, per_eg_grads) + grads = tf.nest.map_structure( + self.reduce_per_example_grads, per_eg_grads) self.optimizer.apply_gradients(zip(grads, self.trainable_variables)) self.compiled_metrics.update_state(y, y_pred) return {m.name: m.result() for m in self.metrics} - + return DPModelClass