Adds DP-FTRL via tree aggregation optimizer DPFTRLTreeAggregationOptimizer.

Includes renaming of `frequency` parameter in restart_query.py to `period` to more more accurately reflect its purpose.

PiperOrigin-RevId: 480736961
This commit is contained in:
A. Unique TensorFlower 2022-10-12 15:46:33 -07:00
parent 5e37c1bc70
commit 71837fbeec
6 changed files with 539 additions and 139 deletions

View file

@ -65,6 +65,7 @@ else:
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import GenericDPAdamOptimizer from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import GenericDPAdamOptimizer
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import GenericDPSGDOptimizer from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import GenericDPSGDOptimizer
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import DPKerasAdagradOptimizer from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import DPKerasAdagradOptimizer
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import DPFTRLTreeAggregationOptimizer
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import DPKerasAdamOptimizer from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import DPKerasAdamOptimizer
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import DPKerasSGDOptimizer from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import DPKerasSGDOptimizer
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import make_gaussian_query_optimizer_class from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import make_gaussian_query_optimizer_class

View file

@ -61,25 +61,24 @@ class PeriodicRoundRestartIndicator(RestartIndicator):
The indicator will maintain an internal counter as state. The indicator will maintain an internal counter as state.
""" """
def __init__(self, frequency: int, warmup: Optional[int] = None): def __init__(self, period: int, warmup: Optional[int] = None):
"""Construct the `PeriodicRoundRestartIndicator`. """Construct the `PeriodicRoundRestartIndicator`.
Args: Args:
frequency: The `next` function will return `True` every `frequency` number period: The `next` function will return `True` every `period` number of
of `next` calls. `next` calls.
warmup: The first `True` will be returned at the `warmup` times call of warmup: The first `True` will be returned at the `warmup` times call of
`next`. `next`.
""" """
if frequency < 1: if period < 1:
raise ValueError('Restart frequency should be equal or larger than 1, ' raise ValueError('Restart period should be equal or larger than 1, '
f'got {frequency}') f'got {period}')
if warmup is None: if warmup is None:
warmup = 0 warmup = 0
elif warmup <= 0 or warmup >= frequency: elif warmup <= 0 or warmup >= period:
raise ValueError( raise ValueError(f'Warmup must be between 1 and `period`-1={period-1}, '
f'Warmup should be between 1 and `frequency-1={frequency-1}`, '
f'got {warmup}') f'got {warmup}')
self.frequency = frequency self.period = period
self.warmup = warmup self.warmup = warmup
def initialize(self): def initialize(self):
@ -96,10 +95,10 @@ class PeriodicRoundRestartIndicator(RestartIndicator):
A pair (value, new_state) where value is the bool indicator and new_state A pair (value, new_state) where value is the bool indicator and new_state
of `state+1`. of `state+1`.
""" """
frequency = tf.constant(self.frequency, tf.int32) period = tf.constant(self.period, tf.int32)
warmup = tf.constant(self.warmup, tf.int32) warmup = tf.constant(self.warmup, tf.int32)
state = state + tf.constant(1, tf.int32) state = state + tf.constant(1, tf.int32)
flag = tf.math.equal(tf.math.floormod(state, frequency), warmup) flag = tf.math.equal(tf.math.floormod(state, period), warmup)
return flag, state return flag, state

View file

@ -23,44 +23,48 @@ from tensorflow_privacy.privacy.dp_query import tree_aggregation_query
class RoundRestartIndicatorTest(tf.test.TestCase, parameterized.TestCase): class RoundRestartIndicatorTest(tf.test.TestCase, parameterized.TestCase):
def assertRestartsOnPeriod(self, indicator: restart_query.RestartIndicator,
state: tf.Tensor, total_steps: int, period: int,
offset: int):
"""Asserts a restart occurs only every `period` steps."""
for step in range(total_steps):
flag, state = indicator.next(state)
if step % period == offset - 1:
self.assertTrue(flag)
else:
self.assertFalse(flag)
@parameterized.named_parameters(('zero', 0), ('negative', -1)) @parameterized.named_parameters(('zero', 0), ('negative', -1))
def test_round_raise(self, frequency): def test_round_raise(self, period):
with self.assertRaisesRegex( with self.assertRaisesRegex(
ValueError, 'Restart frequency should be equal or larger than 1'): ValueError, 'Restart period should be equal or larger than 1'):
restart_query.PeriodicRoundRestartIndicator(frequency) restart_query.PeriodicRoundRestartIndicator(period)
@parameterized.named_parameters(('zero', 0), ('negative', -1), ('equal', 2), @parameterized.named_parameters(('zero', 0), ('negative', -1), ('equal', 2),
('large', 3)) ('large', 3))
def test_round_raise_warmup(self, warmup): def test_round_raise_warmup(self, warmup):
frequency = 2 period = 2
with self.assertRaisesRegex( with self.assertRaisesRegex(
ValueError, ValueError, f'Warmup must be between 1 and `period`-1={period-1}'):
f'Warmup should be between 1 and `frequency-1={frequency-1}`'): restart_query.PeriodicRoundRestartIndicator(period, warmup)
restart_query.PeriodicRoundRestartIndicator(frequency, warmup)
@parameterized.named_parameters(('f1', 1), ('f2', 2), ('f4', 4), ('f5', 5)) @parameterized.named_parameters(('period_1', 1), ('period_2', 2),
def test_round_indicator(self, frequency): ('period_4', 4), ('period_5', 5))
def test_round_indicator(self, period):
total_steps = 20 total_steps = 20
indicator = restart_query.PeriodicRoundRestartIndicator(frequency) indicator = restart_query.PeriodicRoundRestartIndicator(period)
state = indicator.initialize() state = indicator.initialize()
for i in range(total_steps):
flag, state = indicator.next(state)
if i % frequency == frequency - 1:
self.assertTrue(flag)
else:
self.assertFalse(flag)
@parameterized.named_parameters(('f2', 2, 1), ('f4', 4, 3), ('f5', 5, 2)) self.assertRestartsOnPeriod(indicator, state, total_steps, period, period)
def test_round_indicator_warmup(self, frequency, warmup):
@parameterized.named_parameters(('period_2', 2, 1), ('period_4', 4, 3),
('period_5', 5, 2))
def test_round_indicator_warmup(self, period, warmup):
total_steps = 20 total_steps = 20
indicator = restart_query.PeriodicRoundRestartIndicator(frequency, warmup) indicator = restart_query.PeriodicRoundRestartIndicator(period, warmup)
state = indicator.initialize() state = indicator.initialize()
for i in range(total_steps):
flag, state = indicator.next(state) self.assertRestartsOnPeriod(indicator, state, total_steps, period, warmup)
if i % frequency == warmup - 1:
self.assertTrue(flag)
else:
self.assertFalse(flag)
class TimeRestartIndicatorTest(tf.test.TestCase, parameterized.TestCase): class TimeRestartIndicatorTest(tf.test.TestCase, parameterized.TestCase):
@ -116,9 +120,9 @@ class RestartQueryTest(tf.test.TestCase, parameterized.TestCase):
('s1t5f6', 1., 5., 6), ('s1t5f6', 1., 5., 6),
) )
def test_sum_scalar_tree_aggregation_reset(self, scalar_value, def test_sum_scalar_tree_aggregation_reset(self, scalar_value,
tree_node_value, frequency): tree_node_value, period):
total_steps = 20 total_steps = 20
indicator = restart_query.PeriodicRoundRestartIndicator(frequency) indicator = restart_query.PeriodicRoundRestartIndicator(period)
query = tree_aggregation_query.TreeCumulativeSumQuery( query = tree_aggregation_query.TreeCumulativeSumQuery(
clip_fn=_get_l2_clip_fn(), clip_fn=_get_l2_clip_fn(),
clip_value=scalar_value + 1., # no clip clip_value=scalar_value + 1., # no clip
@ -138,8 +142,8 @@ class RestartQueryTest(tf.test.TestCase, parameterized.TestCase):
# be inferred from the binary representation of the current step. # be inferred from the binary representation of the current step.
expected = ( expected = (
scalar_value * (i + 1) + scalar_value * (i + 1) +
i // frequency * tree_node_value * bin(frequency)[2:].count('1') + i // period * tree_node_value * bin(period)[2:].count('1') +
tree_node_value * bin(i % frequency + 1)[2:].count('1')) tree_node_value * bin(i % period + 1)[2:].count('1'))
self.assertEqual(query_result, expected) self.assertEqual(query_result, expected)
@parameterized.named_parameters( @parameterized.named_parameters(
@ -151,9 +155,9 @@ class RestartQueryTest(tf.test.TestCase, parameterized.TestCase):
('s1t5f6', 1., 5., 6), ('s1t5f6', 1., 5., 6),
) )
def test_scalar_tree_aggregation_reset(self, scalar_value, tree_node_value, def test_scalar_tree_aggregation_reset(self, scalar_value, tree_node_value,
frequency): period):
total_steps = 20 total_steps = 20
indicator = restart_query.PeriodicRoundRestartIndicator(frequency) indicator = restart_query.PeriodicRoundRestartIndicator(period)
query = tree_aggregation_query.TreeResidualSumQuery( query = tree_aggregation_query.TreeResidualSumQuery(
clip_fn=_get_l2_clip_fn(), clip_fn=_get_l2_clip_fn(),
clip_value=scalar_value + 1., # no clip clip_value=scalar_value + 1., # no clip
@ -172,8 +176,7 @@ class RestartQueryTest(tf.test.TestCase, parameterized.TestCase):
# two continous tree aggregation values. The tree aggregation value can # two continous tree aggregation values. The tree aggregation value can
# be inferred from the binary representation of the current step. # be inferred from the binary representation of the current step.
expected = scalar_value + tree_node_value * ( expected = scalar_value + tree_node_value * (
bin(i % frequency + 1)[2:].count('1') - bin(i % period + 1)[2:].count('1') - bin(i % period)[2:].count('1'))
bin(i % frequency)[2:].count('1'))
self.assertEqual(query_result, expected) self.assertEqual(query_result, expected)

View file

@ -27,6 +27,8 @@ py_library(
deps = [ deps = [
"//tensorflow_privacy/privacy/dp_query", "//tensorflow_privacy/privacy/dp_query",
"//tensorflow_privacy/privacy/dp_query:gaussian_query", "//tensorflow_privacy/privacy/dp_query:gaussian_query",
"//tensorflow_privacy/privacy/dp_query:restart_query",
"//tensorflow_privacy/privacy/dp_query:tree_aggregation_query",
], ],
) )
@ -47,6 +49,8 @@ py_library(
deps = [ deps = [
"//tensorflow_privacy/privacy/dp_query", "//tensorflow_privacy/privacy/dp_query",
"//tensorflow_privacy/privacy/dp_query:gaussian_query", "//tensorflow_privacy/privacy/dp_query:gaussian_query",
"//tensorflow_privacy/privacy/dp_query:restart_query",
"//tensorflow_privacy/privacy/dp_query:tree_aggregation_query",
], ],
) )

View file

@ -13,12 +13,16 @@
# limitations under the License. # limitations under the License.
# ============================================================================== # ==============================================================================
"""Differentially private version of Keras optimizer v2.""" """Differentially private version of Keras optimizer v2."""
from typing import Optional, Type from typing import List, Optional, Type, Union
import warnings import warnings
import tensorflow as tf import tensorflow as tf
from tensorflow_privacy.privacy.dp_query import dp_query from tensorflow_privacy.privacy.dp_query import dp_query
from tensorflow_privacy.privacy.dp_query import gaussian_query from tensorflow_privacy.privacy.dp_query import gaussian_query
from tensorflow_privacy.privacy.dp_query import restart_query
from tensorflow_privacy.privacy.dp_query import tree_aggregation_query
_VarListType = List[Union[tf.Tensor, tf.Variable]]
def _normalize(microbatch_gradient: tf.Tensor, def _normalize(microbatch_gradient: tf.Tensor,
@ -462,6 +466,102 @@ def make_gaussian_query_optimizer_class(cls):
return return_gaussian_query_optimizer return return_gaussian_query_optimizer
def make_dpftrl_tree_aggregation_optimizer_class(cls):
"""Returns a differentially private follow-the-regularized-leader optimizer.
Args:
cls: `DPOptimizerClass`, the output of `make_keras_optimizer_class`.
"""
def return_dpftrl_tree_aggregation_optimizer(
l2_norm_clip: float,
noise_multiplier: float,
var_list_or_model: Union[_VarListType, tf.keras.Model],
num_microbatches: Optional[int] = None,
gradient_accumulation_steps: int = 1,
restart_period: Optional[int] = None,
restart_warmup: Optional[int] = None,
noise_seed: Optional[int] = None,
*args, # pylint: disable=keyword-arg-before-vararg, g-doc-args
**kwargs):
"""Returns a `DPOptimizerClass` `cls` using the `TreeAggregationQuery`.
Combining this query with a SGD optimizer can be used to implement the
DP-FTRL algorithm in
"Practical and Private (Deep) Learning without Sampling or Shuffling".
This function is a thin wrapper around
`make_keras_optimizer_class.<locals>.DPOptimizerClass` which can be used to
apply a `TreeAggregationQuery` to any `DPOptimizerClass`.
Args:
l2_norm_clip: Clipping norm (max L2 norm of per microbatch gradients).
noise_multiplier: Ratio of the standard deviation to the clipping norm.
var_list_or_model: Either a tf.keras.Model or a list of tf.variables from
which `tf.TensorSpec`s can be defined. These specify the structure and
shapes of records (gradients).
num_microbatches: Number of microbatches into which each minibatch is
split. Default is `None` which means that number of microbatches is
equal to batch size (i.e. each microbatch contains exactly one example).
If `gradient_accumulation_steps` is greater than 1 and
`num_microbatches` is not `None` then the effective number of
microbatches is equal to `num_microbatches *
gradient_accumulation_steps`.
gradient_accumulation_steps: If greater than 1 then optimizer will be
accumulating gradients for this number of optimizer steps before
applying them to update model weights. If this argument is set to 1 then
updates will be applied on each optimizer step.
restart_period: (Optional) Restart wil occur after `restart_period` steps.
The default (None) means there will be no periodic restarts. Must be a
positive integer. If `restart_warmup` is passed, this only applies to
the second restart and onwards and must be not None.
restart_warmup: (Optional) The first restart will occur after
`restart_warmup` steps. The default (None) means no warmup. Must be an
integer in the range [1, `restart_period` - 1].
noise_seed: (Optional) Integer seed for the Gaussian noise generator. If
`None`, a nondeterministic seed based on system time will be generated.
*args: These will be passed on to the base class `__init__` method.
**kwargs: These will be passed on to the base class `__init__` method.
Raise:
ValueError: If restart_warmup is not None and restart_period is None.
"""
if restart_warmup is not None and restart_period is None:
raise ValueError(
'`restart_period` was None when `restart_warmup` was not None.')
if isinstance(var_list_or_model, tf.keras.layers.Layer):
model_trainable_specs = tf.nest.map_structure(
lambda t: tf.TensorSpec(t.shape),
var_list_or_model.trainable_variables)
else:
model_trainable_specs = tf.nest.map_structure(
lambda t: tf.TensorSpec(tf.shape(t)), var_list_or_model)
if restart_period is not None:
sum_query = (
tree_aggregation_query.TreeResidualSumQuery.build_l2_gaussian_query(
l2_norm_clip, noise_multiplier, model_trainable_specs,
noise_seed))
restart_indicator = restart_query.PeriodicRoundRestartIndicator(
period=restart_period, warmup=restart_warmup)
tree_aggregation_sum_query = restart_query.RestartQuery(
sum_query, restart_indicator)
else:
tree_aggregation_sum_query = (
tree_aggregation_query.TreeResidualSumQuery.build_l2_gaussian_query(
l2_norm_clip, noise_multiplier, model_trainable_specs,
noise_seed))
return cls(
dp_sum_query=tree_aggregation_sum_query,
num_microbatches=num_microbatches,
gradient_accumulation_steps=gradient_accumulation_steps,
*args,
**kwargs)
return return_dpftrl_tree_aggregation_optimizer
def make_keras_optimizer_class(cls: Type[tf.keras.optimizers.Optimizer]): def make_keras_optimizer_class(cls: Type[tf.keras.optimizers.Optimizer]):
"""Returns a differentially private optimizer using the `GaussianSumQuery`. """Returns a differentially private optimizer using the `GaussianSumQuery`.
@ -487,6 +587,8 @@ GenericDPAdamOptimizer = make_keras_generic_optimizer_class(
GenericDPSGDOptimizer = make_keras_generic_optimizer_class( GenericDPSGDOptimizer = make_keras_generic_optimizer_class(
tf.keras.optimizers.legacy.SGD) tf.keras.optimizers.legacy.SGD)
DPFTRLTreeAggregationOptimizer = (
make_dpftrl_tree_aggregation_optimizer_class(GenericDPSGDOptimizer))
# We keep the same names for backwards compatibility. # We keep the same names for backwards compatibility.
DPKerasAdagradOptimizer = make_gaussian_query_optimizer_class( DPKerasAdagradOptimizer = make_gaussian_query_optimizer_class(
GenericDPAdagradOptimizer) GenericDPAdagradOptimizer)

View file

@ -135,18 +135,24 @@ class DPOptimizerComputeGradientsTest(tf.test.TestCase, parameterized.TestCase):
self.assertAllCloseAccordingToType(expected_grad1, grads_and_vars[1][0]) self.assertAllCloseAccordingToType(expected_grad1, grads_and_vars[1][0])
@parameterized.named_parameters( @parameterized.named_parameters(
('DPGradientDescent', dp_optimizer_keras.DPKerasSGDOptimizer), ('DPGradientDescent_False', dp_optimizer_keras.DPKerasSGDOptimizer,
('DPGradientDescentVectorized', False),
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer), ('DPGradientDescentVectorized_False',
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, False),
('DPFTRLTreeAggregation_True',
dp_optimizer_keras.DPFTRLTreeAggregationOptimizer, True),
) )
def testClippingNorm(self, optimizer_class): def testClippingNorm(self, optimizer_class, requires_varlist):
var0 = tf.Variable([0.0, 0.0]) var0 = tf.Variable([0.0, 0.0])
data0 = tf.Variable([[3.0, 4.0], [6.0, 8.0]]) data0 = tf.Variable([[3.0, 4.0], [6.0, 8.0]])
varlist_kwarg = {'var_list_or_model': [var0]} if requires_varlist else {}
optimizer = optimizer_class( optimizer = optimizer_class(
l2_norm_clip=1.0, l2_norm_clip=1.0,
noise_multiplier=0.0, noise_multiplier=0.0,
num_microbatches=1, num_microbatches=1,
**varlist_kwarg,
learning_rate=2.0) learning_rate=2.0)
loss = lambda: self._loss(data0, var0) loss = lambda: self._loss(data0, var0)
@ -155,24 +161,31 @@ class DPOptimizerComputeGradientsTest(tf.test.TestCase, parameterized.TestCase):
self.assertAllCloseAccordingToType([-0.6, -0.8], grads_and_vars[0][0]) self.assertAllCloseAccordingToType([-0.6, -0.8], grads_and_vars[0][0])
@parameterized.named_parameters( @parameterized.named_parameters(
('DPGradientDescent 1', dp_optimizer_keras.DPKerasSGDOptimizer, 2.5, 1), ('DPGradientDescent_1', dp_optimizer_keras.DPKerasSGDOptimizer, 1, False),
('DPGradientDescent 2', dp_optimizer_keras.DPKerasSGDOptimizer, 2.5, 2), ('DPGradientDescent_2', dp_optimizer_keras.DPKerasSGDOptimizer, 2, False),
('DPGradientDescent 4', dp_optimizer_keras.DPKerasSGDOptimizer, 2.5, 4), ('DPGradientDescent_4', dp_optimizer_keras.DPKerasSGDOptimizer, 4, False),
('DPGradientDescentVectorized', ('DPGradientDescentVectorized',
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 2.5, 1), dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 1, False),
) ('DPFTRLTreeAggregation_4',
def testClippingNormMultipleVariables(self, cls, l2_clip_norm, dp_optimizer_keras.DPFTRLTreeAggregationOptimizer, 4, True))
num_microbatches): def testClippingNormMultipleVariables(self, cls, num_microbatches,
requires_varlist):
var0 = tf.Variable([1.0, 2.0]) var0 = tf.Variable([1.0, 2.0])
var1 = tf.Variable([3.0]) var1 = tf.Variable([3.0])
data0 = tf.Variable([[3.0, 6.0], [5.0, 6.0], [4.0, 8.0], [-1.0, 0.0]]) data0 = tf.Variable([[3.0, 6.0], [5.0, 6.0], [4.0, 8.0], [-1.0, 0.0]])
data1 = tf.Variable([[8.0], [2.0], [3.0], [1.0]]) data1 = tf.Variable([[8.0], [2.0], [3.0], [1.0]])
l2_clip_norm = 2.5
varlist_kwarg = {
'var_list_or_model': [var0, var1]
} if requires_varlist else {}
opt = cls( opt = cls(
l2_norm_clip=l2_clip_norm, l2_norm_clip=l2_clip_norm,
noise_multiplier=0.0, noise_multiplier=0.0,
num_microbatches=num_microbatches, num_microbatches=num_microbatches,
learning_rate=2.0) learning_rate=2.0,
**varlist_kwarg)
loss = lambda: self._loss(data0, var0) + self._loss(data1, var1) loss = lambda: self._loss(data0, var0) + self._loss(data1, var1)
@ -202,26 +215,28 @@ class DPOptimizerComputeGradientsTest(tf.test.TestCase, parameterized.TestCase):
@parameterized.named_parameters( @parameterized.named_parameters(
('DPGradientDescent_2_4_1', dp_optimizer_keras.DPKerasSGDOptimizer, 2.0, ('DPGradientDescent_2_4_1', dp_optimizer_keras.DPKerasSGDOptimizer, 2.0,
4.0, 1), 4.0, 1, False),
('DPGradientDescent_4_1_4', dp_optimizer_keras.DPKerasSGDOptimizer, 4.0, ('DPGradientDescent_4_1_4', dp_optimizer_keras.DPKerasSGDOptimizer, 4.0,
1.0, 4), 1.0, 4, False),
('DPGradientDescentVectorized_2_4_1', ('DPGradientDescentVectorized_2_4_1',
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 2.0, 4.0, dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 2.0, 4.0, 1,
1), False), ('DPGradientDescentVectorized_4_1_4',
('DPGradientDescentVectorized_4_1_4', dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer,
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 4.0, 1.0, 4.0, 1.0, 4, False),
4), ('DPFTRLTreeAggregation_2_4_1',
) dp_optimizer_keras.DPFTRLTreeAggregationOptimizer, 2.0, 4.0, 1, True))
def testNoiseMultiplier(self, optimizer_class, l2_norm_clip, noise_multiplier, def testNoiseMultiplier(self, optimizer_class, l2_norm_clip, noise_multiplier,
num_microbatches): num_microbatches, requires_varlist):
tf.random.set_seed(2)
var0 = tf.Variable(tf.zeros([1000], dtype=tf.float32)) var0 = tf.Variable(tf.zeros([1000], dtype=tf.float32))
data0 = tf.Variable(tf.zeros([16, 1000], dtype=tf.float32)) data0 = tf.Variable(tf.zeros([16, 1000], dtype=tf.float32))
varlist_kwarg = {'var_list_or_model': [var0]} if requires_varlist else {}
optimizer = optimizer_class( optimizer = optimizer_class(
l2_norm_clip=l2_norm_clip, l2_norm_clip=l2_norm_clip,
noise_multiplier=noise_multiplier, noise_multiplier=noise_multiplier,
num_microbatches=num_microbatches, num_microbatches=num_microbatches,
**varlist_kwarg,
learning_rate=2.0) learning_rate=2.0)
loss = lambda: self._loss(data0, var0) loss = lambda: self._loss(data0, var0)
@ -233,36 +248,6 @@ class DPOptimizerComputeGradientsTest(tf.test.TestCase, parameterized.TestCase):
self.assertNear( self.assertNear(
np.std(grads), l2_norm_clip * noise_multiplier / num_microbatches, 0.5) np.std(grads), l2_norm_clip * noise_multiplier / num_microbatches, 0.5)
@parameterized.named_parameters(
('DPGradientDescent', dp_optimizer_keras.DPKerasSGDOptimizer),
('DPAdagrad', dp_optimizer_keras.DPKerasAdagradOptimizer),
('DPAdam', dp_optimizer_keras.DPKerasAdamOptimizer),
('DPGradientDescentVectorized',
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer),
('DPAdagradVectorized',
dp_optimizer_keras_vectorized.VectorizedDPKerasAdagradOptimizer),
('DPAdamVectorized',
dp_optimizer_keras_vectorized.VectorizedDPKerasAdamOptimizer),
)
def testRaisesOnNoCallOfComputeGradients(self, optimizer_class):
"""Tests that assertion fails when DP gradients are not computed."""
optimizer = optimizer_class(
l2_norm_clip=100.0,
noise_multiplier=0.0,
num_microbatches=1,
learning_rate=2.0)
with self.assertRaises(AssertionError):
grads_and_vars = tf.Variable([0.0])
optimizer.apply_gradients(grads_and_vars)
# Expect no exception if _compute_gradients is called.
var0 = tf.Variable([0.0])
data0 = tf.Variable([[0.0]])
loss = lambda: self._loss(data0, var0)
grads_and_vars = optimizer._compute_gradients(loss, [var0])
optimizer.apply_gradients(grads_and_vars)
class DPOptimizerGetGradientsTest(tf.test.TestCase, parameterized.TestCase): class DPOptimizerGetGradientsTest(tf.test.TestCase, parameterized.TestCase):
"""Tests for get_gradient method. """Tests for get_gradient method.
@ -271,8 +256,13 @@ class DPOptimizerGetGradientsTest(tf.test.TestCase, parameterized.TestCase):
the Estimator framework. the Estimator framework.
""" """
def _make_linear_model_fn(self, optimizer_class, l2_norm_clip, def _make_linear_model_fn(self,
noise_multiplier, num_microbatches, learning_rate): optimizer_class,
l2_norm_clip,
noise_multiplier,
num_microbatches,
learning_rate,
requires_varlist=False):
"""Returns a model function for a linear regressor.""" """Returns a model function for a linear regressor."""
def linear_model_fn(features, labels, mode): def linear_model_fn(features, labels, mode):
@ -287,10 +277,16 @@ class DPOptimizerGetGradientsTest(tf.test.TestCase, parameterized.TestCase):
vector_loss = 0.5 * tf.math.squared_difference(labels, preds) vector_loss = 0.5 * tf.math.squared_difference(labels, preds)
scalar_loss = tf.reduce_mean(input_tensor=vector_loss) scalar_loss = tf.reduce_mean(input_tensor=vector_loss)
# We also set the noise seed (since this is accepted by the constructor).
if requires_varlist:
varlist_kwarg = {'var_list_or_model': layer, 'noise_seed': 2}
else:
varlist_kwarg = {}
optimizer = optimizer_class( optimizer = optimizer_class(
l2_norm_clip=l2_norm_clip, l2_norm_clip=l2_norm_clip,
noise_multiplier=noise_multiplier, noise_multiplier=noise_multiplier,
num_microbatches=num_microbatches, num_microbatches=num_microbatches,
**varlist_kwarg,
learning_rate=learning_rate) learning_rate=learning_rate)
params = layer.trainable_weights params = layer.trainable_weights
@ -304,25 +300,36 @@ class DPOptimizerGetGradientsTest(tf.test.TestCase, parameterized.TestCase):
return linear_model_fn return linear_model_fn
@parameterized.named_parameters( @parameterized.named_parameters(
('DPGradientDescent_1', dp_optimizer_keras.DPKerasSGDOptimizer, 1), ('DPGradientDescent_1_False', dp_optimizer_keras.DPKerasSGDOptimizer, 1,
('DPGradientDescent_2', dp_optimizer_keras.DPKerasSGDOptimizer, 2), False),
('DPGradientDescent_4', dp_optimizer_keras.DPKerasSGDOptimizer, 4), ('DPGradientDescent_2_False', dp_optimizer_keras.DPKerasSGDOptimizer, 2,
('DPGradientDescent_None', dp_optimizer_keras.DPKerasSGDOptimizer, None), False),
('DPGradientDescentVectorized_1', ('DPGradientDescent_4_False', dp_optimizer_keras.DPKerasSGDOptimizer, 4,
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 1), False),
('DPGradientDescentVectorized_2', ('DPGradientDescentVectorized_1_False',
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 2), dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 1, False),
('DPGradientDescentVectorized_4', ('DPGradientDescentVectorized_2_False',
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 4), dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 2, False),
('DPGradientDescentVectorized_None', ('DPGradientDescentVectorized_4_False',
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, None), dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 4, False),
('DPGradientDescentVectorized_None_False',
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, None,
False),
('DPFTRLTreeAggregation_1_True',
dp_optimizer_keras.DPFTRLTreeAggregationOptimizer, 1, True),
) )
def testBaselineNoNoise(self, optimizer_class, num_microbatches): def testBaselineNoNoise(self, optimizer_class, num_microbatches,
requires_varlist):
"""Tests that DP optimizers work with tf.estimator.""" """Tests that DP optimizers work with tf.estimator."""
linear_regressor = tf_estimator.Estimator( linear_regressor = tf_estimator.Estimator(
model_fn=self._make_linear_model_fn(optimizer_class, 100.0, 0.0, model_fn=self._make_linear_model_fn(
num_microbatches, 0.05)) optimizer_class=optimizer_class,
l2_norm_clip=100.0,
noise_multiplier=0.0,
num_microbatches=num_microbatches,
requires_varlist=requires_varlist,
learning_rate=0.05))
true_weights = np.array([[-5], [4], [3], [2]]).astype(np.float32) true_weights = np.array([[-5], [4], [3], [2]]).astype(np.float32)
true_bias = np.array([6.0]).astype(np.float32) true_bias = np.array([6.0]).astype(np.float32)
@ -346,11 +353,14 @@ class DPOptimizerGetGradientsTest(tf.test.TestCase, parameterized.TestCase):
linear_regressor.get_variable_value('dense/bias'), true_bias, atol=0.05) linear_regressor.get_variable_value('dense/bias'), true_bias, atol=0.05)
@parameterized.named_parameters( @parameterized.named_parameters(
('DPGradientDescent_1', dp_optimizer_keras.DPKerasSGDOptimizer), ('DPGradientDescent_False', dp_optimizer_keras.DPKerasSGDOptimizer,
('DPGradientDescentVectorized_1', False),
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer), ('DPGradientDescentVectorized_False',
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, False),
('DPFTRLTreeAggregation_True',
dp_optimizer_keras.DPFTRLTreeAggregationOptimizer, True),
) )
def testClippingNorm(self, optimizer_class): def testClippingNorm(self, optimizer_class, requires_varlist):
"""Tests that DP optimizers work with tf.estimator.""" """Tests that DP optimizers work with tf.estimator."""
true_weights = np.array([[6.0], [0.0], [0], [0]]).astype(np.float32) true_weights = np.array([[6.0], [0.0], [0], [0]]).astype(np.float32)
@ -369,6 +379,7 @@ class DPOptimizerGetGradientsTest(tf.test.TestCase, parameterized.TestCase):
l2_norm_clip=1.0e9, l2_norm_clip=1.0e9,
noise_multiplier=0.0, noise_multiplier=0.0,
num_microbatches=1, num_microbatches=1,
requires_varlist=requires_varlist,
learning_rate=1.0)) learning_rate=1.0))
unclipped_linear_regressor.train(input_fn=train_input_fn, steps=1) unclipped_linear_regressor.train(input_fn=train_input_fn, steps=1)
@ -382,6 +393,7 @@ class DPOptimizerGetGradientsTest(tf.test.TestCase, parameterized.TestCase):
l2_norm_clip=1.0, l2_norm_clip=1.0,
noise_multiplier=0.0, noise_multiplier=0.0,
num_microbatches=1, num_microbatches=1,
requires_varlist=requires_varlist,
learning_rate=1.0)) learning_rate=1.0))
clipped_linear_regressor.train(input_fn=train_input_fn, steps=1) clipped_linear_regressor.train(input_fn=train_input_fn, steps=1)
@ -394,35 +406,36 @@ class DPOptimizerGetGradientsTest(tf.test.TestCase, parameterized.TestCase):
bias_value / global_norm, bias_value / global_norm,
atol=0.001) atol=0.001)
# Parameters for testing: optimizer, l2_norm_clip, noise_multiplier,
# num_microbatches.
@parameterized.named_parameters( @parameterized.named_parameters(
('DPGradientDescent_2_4_1', dp_optimizer_keras.DPKerasSGDOptimizer, 2.0, ('DPGradientDescent_2_4_1_False', dp_optimizer_keras.DPKerasSGDOptimizer,
4.0, 1), 2.0, 4.0, 1, False),
('DPGradientDescent_3_2_4', dp_optimizer_keras.DPKerasSGDOptimizer, 3.0, ('DPGradientDescent_3_2_4_False', dp_optimizer_keras.DPKerasSGDOptimizer,
2.0, 4), 3.0, 2.0, 4, False),
('DPGradientDescent_8_6_8', dp_optimizer_keras.DPKerasSGDOptimizer, 8.0, ('DPGradientDescent_8_6_8_False', dp_optimizer_keras.DPKerasSGDOptimizer,
6.0, 8), 8.0, 6.0, 8, False),
('DPGradientDescentVectorized_2_4_1', ('DPGradientDescentVectorized_2_4_1_False',
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 2.0, 4.0, dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 2.0, 4.0, 1,
1), False),
('DPGradientDescentVectorized_3_2_4', ('DPGradientDescentVectorized_3_2_4_False',
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 3.0, 2.0, dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 3.0, 2.0, 4,
4), False),
('DPGradientDescentVectorized_8_6_8', ('DPGradientDescentVectorized_8_6_8_False',
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 8.0, 6.0, dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 8.0, 6.0, 8,
8), False),
('DPFTRLTreeAggregation_8_4_2_True',
dp_optimizer_keras.DPFTRLTreeAggregationOptimizer, 8.0, 4.0, 1, True),
) )
def testNoiseMultiplier(self, optimizer_class, l2_norm_clip, noise_multiplier, def testNoiseMultiplier(self, optimizer_class, l2_norm_clip, noise_multiplier,
num_microbatches): num_microbatches, requires_varlist):
"""Tests that DP optimizers work with tf.estimator.""" """Tests that DP optimizers work with tf.estimator."""
tf.random.set_seed(2)
linear_regressor = tf_estimator.Estimator( linear_regressor = tf_estimator.Estimator(
model_fn=self._make_linear_model_fn( model_fn=self._make_linear_model_fn(
optimizer_class, optimizer_class,
l2_norm_clip, l2_norm_clip,
noise_multiplier, noise_multiplier,
num_microbatches, num_microbatches,
requires_varlist=requires_varlist,
learning_rate=1.0)) learning_rate=1.0))
true_weights = np.zeros((1000, 1), dtype=np.float32) true_weights = np.zeros((1000, 1), dtype=np.float32)
@ -745,5 +758,283 @@ class DPVectorizedOptimizerUnconnectedNodesTest(tf.test.TestCase,
self.fail('ValueError raised by model.fit().') self.fail('ValueError raised by model.fit().')
class DPTreeAggregationOptimizerComputeGradientsTest(tf.test.TestCase,
parameterized.TestCase):
"""Tests for _compute_gradients method."""
def _loss(self, val0, val1):
"""Loss function whose derivative w.r.t val1 is val1 - val0."""
return 0.5 * tf.reduce_sum(
input_tensor=tf.math.squared_difference(val0, val1), axis=1)
@parameterized.named_parameters(
('1_None_None', 1, None, None),
('2_2_1', 2, 2, 1),
('4_1_None', 4, 1, None),
('4_4_2', 4, 4, 2),
)
def testBaselineWithCallableLossNoNoise(self, num_microbatches,
restart_period, restart_warmup):
var0 = tf.Variable([1.0, 2.0])
var1 = tf.Variable([3.0])
data0 = tf.Variable([[3.0, 4.0], [5.0, 6.0], [7.0, 8.0], [-1.0, 0.0]])
data1 = tf.Variable([[8.0], [2.0], [3.0], [1.0]])
expected_grad0 = [-2.5, -2.5]
expected_grad1 = [-0.5]
optimizer = dp_optimizer_keras.DPFTRLTreeAggregationOptimizer(
l2_norm_clip=100.0,
noise_multiplier=0.0,
var_list_or_model=[var0, var1],
num_microbatches=num_microbatches,
restart_period=restart_period,
restart_warmup=restart_warmup,
learning_rate=2.0)
loss = lambda: self._loss(data0, var0) + self._loss(data1, var1)
grads_and_vars = optimizer._compute_gradients(loss, [var0, var1])
self.assertAllCloseAccordingToType(expected_grad0, grads_and_vars[0][0])
self.assertAllCloseAccordingToType(expected_grad1, grads_and_vars[1][0])
@parameterized.named_parameters(
('1_None_None', 1, None, None),
('2_2_1', 2, 2, 1),
('4_1_None', 4, 1, None),
('4_4_2', 4, 4, 2),
)
def testBaselineWithTensorLossNoNoise(self, num_microbatches, restart_period,
restart_warmup):
var0 = tf.Variable([1.0, 2.0])
var1 = tf.Variable([3.0])
data0 = tf.Variable([[3.0, 4.0], [5.0, 6.0], [7.0, 8.0], [-1.0, 0.0]])
data1 = tf.Variable([[8.0], [2.0], [3.0], [1.0]])
expected_grad0 = [-2.5, -2.5]
expected_grad1 = [-0.5]
optimizer = dp_optimizer_keras.DPFTRLTreeAggregationOptimizer(
l2_norm_clip=100.0,
noise_multiplier=0.0,
var_list_or_model=[var0, var1],
num_microbatches=num_microbatches,
restart_period=restart_period,
restart_warmup=restart_warmup,
learning_rate=2.0)
tape = tf.GradientTape()
with tape:
loss = self._loss(data0, var0) + self._loss(data1, var1)
grads_and_vars = optimizer._compute_gradients(loss, [var0, var1], tape=tape)
self.assertAllCloseAccordingToType(expected_grad0, grads_and_vars[0][0])
self.assertAllCloseAccordingToType(expected_grad1, grads_and_vars[1][0])
def testRaisesOnNoCallOfComputeGradients(self):
"""Tests that assertion fails when DP gradients are not computed."""
variables = [tf.Variable([0.0])]
optimizer = dp_optimizer_keras.DPFTRLTreeAggregationOptimizer(
l2_norm_clip=100.0,
noise_multiplier=0.0,
num_microbatches=1,
learning_rate=2.0,
restart_period=None,
restart_warmup=None,
var_list_or_model=variables)
with self.assertRaises(AssertionError):
optimizer.apply_gradients(variables)
# Expect no exception if _compute_gradients is called.
data0 = tf.Variable([[0.0]])
loss = lambda: self._loss(data0, variables[0])
grads_and_vars = optimizer._compute_gradients(loss, variables[0])
optimizer.apply_gradients(grads_and_vars)
class DPTreeAggregationGetGradientsTest(tf.test.TestCase,
parameterized.TestCase):
"""Tests for get_gradient method.
Since get_gradients must run in graph mode, the method is tested within
the Estimator framework.
"""
def _make_linear_model_fn(self, l2_norm_clip, noise_multiplier,
num_microbatches, restart_period, restart_warmup,
learning_rate):
"""Returns a model function for a linear regressor."""
def linear_model_fn(features, labels, mode):
layer = tf.keras.layers.Dense(
1,
activation='linear',
name='dense',
kernel_initializer='zeros',
bias_initializer='zeros')
preds = layer(features)
vector_loss = 0.5 * tf.math.squared_difference(labels, preds)
scalar_loss = tf.reduce_mean(input_tensor=vector_loss)
optimizer = dp_optimizer_keras.DPFTRLTreeAggregationOptimizer(
l2_norm_clip=l2_norm_clip,
noise_multiplier=noise_multiplier,
num_microbatches=num_microbatches,
var_list_or_model=layer,
restart_period=restart_period,
restart_warmup=restart_warmup,
learning_rate=learning_rate)
params = layer.trainable_weights
global_step = tf.compat.v1.train.get_global_step()
train_op = tf.group(
optimizer.get_updates(loss=vector_loss, params=params),
[tf.compat.v1.assign_add(global_step, 1)])
return tf_estimator.EstimatorSpec(
mode=mode, loss=scalar_loss, train_op=train_op)
return linear_model_fn
@parameterized.named_parameters(
('1_None_None', 1, None, None),
('2_1_1', 2, 2, 1),
('4_1_None', 4, 1, None),
('4_4_2', 4, 4, 2),
)
def testBaselineNoNoise(self, num_microbatches, restart_period,
restart_warmup):
"""Tests that DP optimizers work with tf.estimator."""
linear_regressor = tf_estimator.Estimator(
model_fn=self._make_linear_model_fn(
l2_norm_clip=100.0,
noise_multiplier=0.0,
num_microbatches=num_microbatches,
restart_period=restart_period,
restart_warmup=restart_warmup,
learning_rate=0.05))
true_weights = np.array([[-5], [4], [3], [2]]).astype(np.float32)
true_bias = np.array([6.0]).astype(np.float32)
train_data = np.random.normal(scale=3.0, size=(1000, 4)).astype(np.float32)
train_labels = np.matmul(train_data,
true_weights) + true_bias + np.random.normal(
scale=0.0, size=(1000, 1)).astype(np.float32)
def train_input_fn():
return tf.data.Dataset.from_tensor_slices(
(train_data, train_labels)).batch(8)
linear_regressor.train(input_fn=train_input_fn, steps=125)
self.assertAllClose(
linear_regressor.get_variable_value('dense/kernel'),
true_weights,
atol=0.05)
self.assertAllClose(
linear_regressor.get_variable_value('dense/bias'), true_bias, atol=0.05)
def testRaisesOnNoCallOfGetGradients(self):
"""Tests that assertion fails when DP gradients are not computed."""
grads_and_vars = tf.Variable([0.0])
optimizer = dp_optimizer_keras.DPFTRLTreeAggregationOptimizer(
l2_norm_clip=100.0,
noise_multiplier=0.0,
num_microbatches=1,
var_list_or_model=[grads_and_vars],
restart_period=None,
restart_warmup=None,
learning_rate=2.0)
with self.assertRaises(AssertionError):
optimizer.apply_gradients(grads_and_vars)
def testLargeBatchEmulationNoNoise(self):
# Test for emulation of large batch training.
# It tests that updates are only done every gradient_accumulation_steps
# steps.
# In this test we set noise multiplier to zero and clipping norm to high
# value, such that optimizer essentially behave as non-DP optimizer.
# This makes easier to check how values of variables are changing.
#
# This test optimizes loss var0*x + var1
# Gradients of this loss are computed as:
# d(loss)/d(var0) = x
# d(loss)/d(var1) = 1
var0 = tf.Variable([[1.0, 2.0]], dtype=tf.float32)
var1 = tf.Variable([3.0], dtype=tf.float32)
x1 = tf.constant([[2.0, 0.0], [0.0, 1.0]], dtype=tf.float32)
loss1 = lambda: tf.matmul(var0, x1, transpose_b=True) + var1
x2 = tf.constant([[4.0, 2.0], [2.0, 1.0]], dtype=tf.float32)
loss2 = lambda: tf.matmul(var0, x2, transpose_b=True) + var1
variables = [var0, var1]
optimizer = dp_optimizer_keras.DPFTRLTreeAggregationOptimizer(
l2_norm_clip=100.0,
noise_multiplier=0.0,
gradient_accumulation_steps=2,
var_list_or_model=variables,
restart_period=None,
restart_warmup=None,
learning_rate=1.0)
# before any call to optimizer
self.assertAllCloseAccordingToType([[1.0, 2.0]], var0)
self.assertAllCloseAccordingToType([3.0], var1)
optimizer.minimize(loss1, variables)
# After first call to optimizer values didn't change
self.assertAllCloseAccordingToType([[1.0, 2.0]], var0)
self.assertAllCloseAccordingToType([3.0], var1)
optimizer.minimize(loss2, variables)
# After second call to optimizer updates were applied
self.assertAllCloseAccordingToType([[-1.0, 1.0]], var0)
self.assertAllCloseAccordingToType([2.0], var1)
optimizer.minimize(loss2, variables)
# After third call to optimizer values didn't change
self.assertAllCloseAccordingToType([[-1.0, 1.0]], var0)
self.assertAllCloseAccordingToType([2.0], var1)
optimizer.minimize(loss2, variables)
# After fourth call to optimizer updates were applied again
self.assertAllCloseAccordingToType([[-4.0, -0.5]], var0)
self.assertAllCloseAccordingToType([1.0], var1)
@parameterized.named_parameters(
('1', 1),
('2', 2),
('4', 4),
)
def testLargeBatchEmulation(self, gradient_accumulation_steps):
# Uses clipping and noise, thus does not test specific values
# of the variables and only tests how often variables are updated.
var0 = tf.Variable([[1.0, 2.0]], dtype=tf.float32)
var1 = tf.Variable([3.0], dtype=tf.float32)
x = tf.constant([[2.0, 0.0], [0.0, 1.0]], dtype=tf.float32)
loss = lambda: tf.matmul(var0, x, transpose_b=True) + var1
variables = [var0, var1]
optimizer = dp_optimizer_keras.DPFTRLTreeAggregationOptimizer(
l2_norm_clip=100.0,
noise_multiplier=0.0,
gradient_accumulation_steps=gradient_accumulation_steps,
var_list_or_model=variables,
restart_period=None,
restart_warmup=None,
learning_rate=1.0)
for _ in range(gradient_accumulation_steps):
self.assertAllCloseAccordingToType([[1.0, 2.0]], var0)
self.assertAllCloseAccordingToType([3.0], var1)
optimizer.minimize(loss, variables)
self.assertNotAllClose([[1.0, 2.0]], var0)
self.assertNotAllClose([3.0], var1)
if __name__ == '__main__': if __name__ == '__main__':
tf.test.main() tf.test.main()