Update tree aggregation rdp accountant to allow different number of max_participation.

PiperOrigin-RevId: 399510813
This commit is contained in:
Zheng Xu 2021-09-28 13:03:57 -07:00 committed by A. Unique TensorFlower
parent 99c82a49d8
commit 7426a4ec30
3 changed files with 96 additions and 26 deletions

View file

@ -45,6 +45,7 @@ else:
from tensorflow_privacy.privacy.analysis.compute_dp_sgd_privacy_lib import compute_dp_sgd_privacy
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_heterogeneous_rdp
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp_tree
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
# DPQuery classes

View file

@ -398,19 +398,22 @@ def compute_rdp(q, noise_multiplier, steps, orders):
return rdp * steps
def _compute_rdp_tree(sigma, steps_list, max_participation, alpha):
def _compute_rdp_tree(sigma, steps_list, max_participation_list, alpha):
"""Computes RDP of the Tree Aggregation Protocol at order alpha."""
if np.isinf(alpha):
return np.inf
tree_depths = [
math.floor(math.log2(steps)) + 1 for steps in steps_list if steps > 0
]
return alpha * max_participation * sum(tree_depths) / (2 * sigma**2)
record_occurence = [
x * y for x, y in zip(max_participation_list, tree_depths)
]
return alpha * sum(record_occurence) / (2 * sigma**2)
def compute_rdp_tree(
noise_multiplier: float, steps_list: Collection[float],
max_participation: int,
noise_multiplier: float, steps_list: Union[float, Collection[float]],
max_participation_list: Union[int, Collection[int]],
orders: Union[float, Collection[float]]) -> Collection[float]:
"""Computes RDP of the Tree Aggregation Protocol for Gaussian Mechanism.
@ -418,10 +421,11 @@ def compute_rdp_tree(
noise_multiplier: A non-negative float representing the ratio of the
standard deviation of the Gaussian noise to the l2-sensitivity of the
function to which it is added.
steps_list: A list of non-negative intergers representing the number of
steps between tree restarts.
max_participation: A positive integer representing maximum number of times a
sample may appear between tree restarts.
steps_list: A scalar or a list of non-negative intergers representing the
number of steps between tree restarts.
max_participation_list: A scalar or a list of positive integers representing
maximum number of times a sample may appear between tree restarts. The
type (scalar/list) of `max_participation_list` should match `steps_list`.
orders: An array (or a scalar) of RDP orders.
Returns:
@ -433,23 +437,50 @@ def compute_rdp_tree(
elif noise_multiplier == 0:
return np.inf
if max_participation <= 0:
raise ValueError(
f"Max participation must be positive, got {max_participation}")
if not steps_list:
raise ValueError("List of steps must be non-empty.")
raise ValueError(
"steps_list must be a non-empty list, or a non-zero scalar, got "
f"{steps_list}.")
if not max_participation_list:
raise ValueError(
"max_participation_list must be a non-empty list, or a non-zero scalar,"
f" got {max_participation_list}.")
if np.isscalar(steps_list) and np.isscalar(max_participation_list):
steps_list = [steps_list]
max_participation_list = [max_participation_list]
elif np.isscalar(steps_list):
raise ValueError(
"`steps_list` and `max_participation_list` must have the same type, got"
f"scalar of steps: {steps_list}, and list of max_participations with "
f"length {len(max_participation_list)}.")
elif np.isscalar(max_participation_list):
raise ValueError(
"`steps_list` and `max_participation_list` must have the same type, got"
f"scalar of max_participation: {max_participation_list}, and list of "
f"steps with length {len(steps_list)}.")
elif len(max_participation_list) != len(steps_list):
raise ValueError(
"`steps_list` and `max_participation_list` must have the same size, got"
f"steps length {len(steps_list)}, max_participations length "
f"{len(max_participation_list)}")
for max_participation in max_participation_list:
if max_participation <= 0:
raise ValueError(
f"Max participation must be positive, got {max_participation}")
for steps in steps_list:
if steps < 0:
raise ValueError(f"List of steps must be non-negative, got {steps_list}")
raise ValueError(f"Steps must be non-negative, got {steps_list}")
if np.isscalar(orders):
rdp = _compute_rdp_tree(noise_multiplier, steps_list, max_participation,
orders)
rdp = _compute_rdp_tree(noise_multiplier, steps_list,
max_participation_list, orders)
else:
rdp = np.array([
_compute_rdp_tree(noise_multiplier, steps_list, max_participation,
_compute_rdp_tree(noise_multiplier, steps_list, max_participation_list,
alpha) for alpha in orders
])

View file

@ -272,7 +272,7 @@ class TreeAggregationTest(tf.test.TestCase, parameterized.TestCase):
# This tests is based on the StackOverflow setting in "Practical and
# Private (Deep) Learning without Sampling or Shuffling". The calculated
# epsilon could be better as the method in this package keeps improving.
steps_list, target_delta, max_participation = [1600], 1e-6, 1
steps_list, target_delta, max_participation = 1600, 1e-6, 1
rdp = rdp_accountant.compute_rdp_tree(noise_multiplier, steps_list,
max_participation, orders)
new_eps = rdp_accountant.get_privacy_spent(
@ -280,9 +280,33 @@ class TreeAggregationTest(tf.test.TestCase, parameterized.TestCase):
self.assertLess(new_eps, eps)
@parameterized.named_parameters(
('restart4_max2', [400] * 4, 2),
('restart2_max1', [800] * 2, 1),
('adaptive_max4', [10, 400, 400, 400, 390], 4),
('restart4_max2', [400] * 4, [2] * 4),
('restart2_max1', [800] * 2, [1] * 2),
('adaptive_max4', [10, 400, 400, 400, 390], [4] * 5),
('adaptive', [10, 400, 400, 400, 390], [2, 3, 4, 4, 3]))
def test_compose_tree_rdp(self, steps_list, max_participation_list):
noise_multiplier, orders = 0.1, 1
if np.isscalar(max_participation_list):
rdp_list = [
rdp_accountant.compute_rdp_tree(noise_multiplier, steps,
max_participation_list, orders)
for steps in steps_list
]
else:
rdp_list = [
rdp_accountant.compute_rdp_tree(noise_multiplier, steps,
max_participation, orders) for steps,
max_participation in zip(steps_list, max_participation_list)
]
rdp_composed = rdp_accountant.compute_rdp_tree(noise_multiplier, steps_list,
max_participation_list,
orders)
self.assertAllClose(rdp_composed, sum(rdp_list), rtol=1e-12)
@parameterized.named_parameters(
('restart4_max2', [400] * 4, [2] * 4),
('restart2_max1', [800] * 2, [1] * 2),
('adaptive_max4', [10, 400, 400, 400, 390], [4] * 5),
)
def test_compute_eps_tree_decreasing(self, steps_list, max_participation):
# Test privacy epsilon decreases with noise multiplier increasing when
@ -299,11 +323,12 @@ class TreeAggregationTest(tf.test.TestCase, parameterized.TestCase):
self.assertLess(eps, prev_eps)
@parameterized.named_parameters(
('negative_noise', -1, [3], 2, 1),
('negative_noise', -1, 3, 2, 1),
('empty_steps', 1, [], 2, 1),
('negative_steps', 1, [-3], 2, 1),
('zero_participation', 1, [3], 0, 1),
('negative_participation', 1, [3], -1, 1),
('empty_part', 1, 1, [], 1),
('negative_steps', 1, -3, 2, 1),
('zero_participation', 1, 3, 0, 1),
('negative_participation', 1, 3, -1, 1),
)
def test_compute_rdp_tree_raise(self, noise_multiplier, steps_list,
max_participation, orders):
@ -311,6 +336,18 @@ class TreeAggregationTest(tf.test.TestCase, parameterized.TestCase):
rdp_accountant.compute_rdp_tree(noise_multiplier, steps_list,
max_participation, orders)
@parameterized.named_parameters(
('list_scalar', [2], 1),
('scalar_list', 2, [1]),
('list_length', [2, 3], [1]),
('list_length2', [2, 3], [1, 2, 2]),
)
def test_compute_rdp_tree_raise_input_type(self, steps_list,
max_participation):
with self.assertRaisesRegex(ValueError, 'must have the same'):
rdp_accountant.compute_rdp_tree(
0.1, steps_list, max_participation, orders=1)
@parameterized.named_parameters(
('t100n0.1', 100, 0.1),
('t1000n0.01', 1000, 0.01),
@ -318,7 +355,8 @@ class TreeAggregationTest(tf.test.TestCase, parameterized.TestCase):
def test_no_tree_no_sampling(self, total_steps, noise_multiplier):
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
tree_rdp = rdp_accountant.compute_rdp_tree(noise_multiplier,
[1] * total_steps, 1, orders)
[1] * total_steps,
[1] * total_steps, orders)
rdp = rdp_accountant.compute_rdp(1., noise_multiplier, total_steps, orders)
self.assertAllClose(tree_rdp, rdp, rtol=1e-12)