forked from 626_privacy/tensorflow_privacy
Option for plotting attack results in the same figure.
PiperOrigin-RevId: 333225502
This commit is contained in:
parent
677b3d9e9a
commit
7c53757250
9 changed files with 261 additions and 186 deletions
|
@ -573,18 +573,19 @@ def get_flattened_attack_metrics(results: AttackResults):
|
||||||
results: membership inference attack results.
|
results: membership inference attack results.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
properties: a list of (slice, attack_type, metric name)
|
types: a list of attack types
|
||||||
|
slices: a list of slices
|
||||||
|
attack_metrics: a list of metric names
|
||||||
values: a list of metric values, i-th element correspond to properties[i]
|
values: a list of metric values, i-th element correspond to properties[i]
|
||||||
"""
|
"""
|
||||||
properties = []
|
types = []
|
||||||
|
slices = []
|
||||||
|
attack_metrics = []
|
||||||
values = []
|
values = []
|
||||||
for attack_result in results.single_attack_results:
|
for attack_result in results.single_attack_results:
|
||||||
slice_spec = attack_result.slice_spec
|
types += [str(attack_result.attack_type)] * 2
|
||||||
prop = [str(slice_spec), str(attack_result.attack_type)]
|
slices += [str(attack_result.slice_spec)] * 2
|
||||||
properties += [prop + ['adv'], prop + ['auc']]
|
attack_metrics += ['adv', 'auc']
|
||||||
values += [
|
values += [float(attack_result.get_attacker_advantage()),
|
||||||
float(attack_result.get_attacker_advantage()),
|
float(attack_result.get_auc())]
|
||||||
float(attack_result.get_auc())
|
return types, slices, attack_metrics, values
|
||||||
]
|
|
||||||
|
|
||||||
return properties, values
|
|
||||||
|
|
|
@ -15,8 +15,8 @@
|
||||||
# Lint as: python3
|
# Lint as: python3
|
||||||
"""A callback and a function in keras for membership inference attack."""
|
"""A callback and a function in keras for membership inference attack."""
|
||||||
|
|
||||||
|
import os
|
||||||
from typing import Iterable
|
from typing import Iterable
|
||||||
|
|
||||||
from absl import logging
|
from absl import logging
|
||||||
|
|
||||||
import tensorflow.compat.v1 as tf
|
import tensorflow.compat.v1 as tf
|
||||||
|
@ -27,7 +27,7 @@ from tensorflow_privacy.privacy.membership_inference_attack.data_structures impo
|
||||||
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import get_flattened_attack_metrics
|
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import get_flattened_attack_metrics
|
||||||
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import SlicingSpec
|
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import SlicingSpec
|
||||||
from tensorflow_privacy.privacy.membership_inference_attack.utils import log_loss
|
from tensorflow_privacy.privacy.membership_inference_attack.utils import log_loss
|
||||||
from tensorflow_privacy.privacy.membership_inference_attack.utils import write_to_tensorboard
|
from tensorflow_privacy.privacy.membership_inference_attack.utils_tensorboard import write_results_to_tensorboard
|
||||||
|
|
||||||
|
|
||||||
def calculate_losses(model, data, labels):
|
def calculate_losses(model, data, labels):
|
||||||
|
@ -55,7 +55,8 @@ class MembershipInferenceCallback(tf.keras.callbacks.Callback):
|
||||||
in_train, out_train,
|
in_train, out_train,
|
||||||
slicing_spec: SlicingSpec = None,
|
slicing_spec: SlicingSpec = None,
|
||||||
attack_types: Iterable[AttackType] = (AttackType.THRESHOLD_ATTACK,),
|
attack_types: Iterable[AttackType] = (AttackType.THRESHOLD_ATTACK,),
|
||||||
tensorboard_dir=None):
|
tensorboard_dir=None,
|
||||||
|
tensorboard_merge_classifiers=False):
|
||||||
"""Initalizes the callback.
|
"""Initalizes the callback.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
|
@ -64,18 +65,28 @@ class MembershipInferenceCallback(tf.keras.callbacks.Callback):
|
||||||
slicing_spec: slicing specification of the attack
|
slicing_spec: slicing specification of the attack
|
||||||
attack_types: a list of attacks, each of type AttackType
|
attack_types: a list of attacks, each of type AttackType
|
||||||
tensorboard_dir: directory for tensorboard summary
|
tensorboard_dir: directory for tensorboard summary
|
||||||
|
tensorboard_merge_classifiers: if true, plot different classifiers with
|
||||||
|
the same slicing_spec and metric in the same figure
|
||||||
"""
|
"""
|
||||||
self._in_train_data, self._in_train_labels = in_train
|
self._in_train_data, self._in_train_labels = in_train
|
||||||
self._out_train_data, self._out_train_labels = out_train
|
self._out_train_data, self._out_train_labels = out_train
|
||||||
self._slicing_spec = slicing_spec
|
self._slicing_spec = slicing_spec
|
||||||
self._attack_types = attack_types
|
self._attack_types = attack_types
|
||||||
# Setup tensorboard writer if tensorboard_dir is specified
|
self._tensorboard_merge_classifiers = tensorboard_merge_classifiers
|
||||||
if tensorboard_dir:
|
if tensorboard_dir:
|
||||||
|
if tensorboard_merge_classifiers:
|
||||||
|
self._writers = {}
|
||||||
with tf.Graph().as_default():
|
with tf.Graph().as_default():
|
||||||
self._writer = tf.summary.FileWriter(tensorboard_dir)
|
for attack_type in attack_types:
|
||||||
|
self._writers[attack_type.name] = tf.summary.FileWriter(
|
||||||
|
os.path.join(tensorboard_dir, 'MI', attack_type.name))
|
||||||
|
else:
|
||||||
|
with tf.Graph().as_default():
|
||||||
|
self._writers = tf.summary.FileWriter(
|
||||||
|
os.path.join(tensorboard_dir, 'MI'))
|
||||||
logging.info('Will write to tensorboard.')
|
logging.info('Will write to tensorboard.')
|
||||||
else:
|
else:
|
||||||
self._writer = None
|
self._writers = None
|
||||||
|
|
||||||
def on_epoch_end(self, epoch, logs=None):
|
def on_epoch_end(self, epoch, logs=None):
|
||||||
results = run_attack_on_keras_model(
|
results = run_attack_on_keras_model(
|
||||||
|
@ -86,15 +97,16 @@ class MembershipInferenceCallback(tf.keras.callbacks.Callback):
|
||||||
self._attack_types)
|
self._attack_types)
|
||||||
logging.info(results)
|
logging.info(results)
|
||||||
|
|
||||||
attack_properties, attack_values = get_flattened_attack_metrics(results)
|
att_types, att_slices, att_metrics, att_values = get_flattened_attack_metrics(
|
||||||
|
results)
|
||||||
print('Attack result:')
|
print('Attack result:')
|
||||||
print('\n'.join([' %s: %.4f' % (', '.join(p), r) for p, r in
|
print('\n'.join([' %s: %.4f' % (', '.join([s, t, m]), v) for t, s, m, v in
|
||||||
zip(attack_properties, attack_values)]))
|
zip(att_types, att_slices, att_metrics, att_values)]))
|
||||||
|
|
||||||
# Write to tensorboard if tensorboard_dir is specified
|
# Write to tensorboard if tensorboard_dir is specified
|
||||||
attack_property_tags = ['attack/' + '_'.join(p) for p in attack_properties]
|
if self._writers is not None:
|
||||||
write_to_tensorboard(self._writer, attack_property_tags, attack_values,
|
write_results_to_tensorboard(results, self._writers, epoch,
|
||||||
epoch)
|
self._tensorboard_merge_classifiers)
|
||||||
|
|
||||||
|
|
||||||
def run_attack_on_keras_model(
|
def run_attack_on_keras_model(
|
||||||
|
|
|
@ -26,95 +26,86 @@ from tensorflow_privacy.privacy.membership_inference_attack.data_structures impo
|
||||||
from tensorflow_privacy.privacy.membership_inference_attack.keras_evaluation import MembershipInferenceCallback
|
from tensorflow_privacy.privacy.membership_inference_attack.keras_evaluation import MembershipInferenceCallback
|
||||||
from tensorflow_privacy.privacy.membership_inference_attack.keras_evaluation import run_attack_on_keras_model
|
from tensorflow_privacy.privacy.membership_inference_attack.keras_evaluation import run_attack_on_keras_model
|
||||||
|
|
||||||
GradientDescentOptimizer = tf.train.GradientDescentOptimizer
|
|
||||||
|
|
||||||
FLAGS = flags.FLAGS
|
FLAGS = flags.FLAGS
|
||||||
|
flags.DEFINE_float('learning_rate', 0.02, 'Learning rate for training')
|
||||||
flags.DEFINE_float('learning_rate', .15, 'Learning rate for training')
|
flags.DEFINE_integer('batch_size', 250, 'Batch size')
|
||||||
flags.DEFINE_integer('batch_size', 256, 'Batch size')
|
flags.DEFINE_integer('epochs', 100, 'Number of epochs')
|
||||||
flags.DEFINE_integer('epochs', 10, 'Number of epochs')
|
|
||||||
flags.DEFINE_string('model_dir', None, 'Model directory.')
|
flags.DEFINE_string('model_dir', None, 'Model directory.')
|
||||||
|
flags.DEFINE_bool('tensorboard_merge_classifiers', False, 'If true, plot '
|
||||||
|
'different classifiers with the same slicing_spec and metric '
|
||||||
|
'in the same figure.')
|
||||||
|
|
||||||
|
|
||||||
def cnn_model():
|
def small_cnn():
|
||||||
"""Define a CNN model."""
|
"""Setup a small CNN for image classification."""
|
||||||
model = tf.keras.Sequential([
|
model = tf.keras.models.Sequential()
|
||||||
tf.keras.layers.Conv2D(
|
model.add(tf.keras.layers.Input(shape=(32, 32, 3)))
|
||||||
16,
|
|
||||||
8,
|
for _ in range(3):
|
||||||
strides=2,
|
model.add(tf.keras.layers.Conv2D(32, (3, 3), activation='relu'))
|
||||||
padding='same',
|
model.add(tf.keras.layers.MaxPooling2D())
|
||||||
activation='relu',
|
|
||||||
input_shape=(28, 28, 1)),
|
model.add(tf.keras.layers.Flatten())
|
||||||
tf.keras.layers.MaxPool2D(2, 1),
|
model.add(tf.keras.layers.Dense(64, activation='relu'))
|
||||||
tf.keras.layers.Conv2D(
|
model.add(tf.keras.layers.Dense(10))
|
||||||
32, 4, strides=2, padding='valid', activation='relu'),
|
|
||||||
tf.keras.layers.MaxPool2D(2, 1),
|
|
||||||
tf.keras.layers.Flatten(),
|
|
||||||
tf.keras.layers.Dense(32, activation='relu'),
|
|
||||||
tf.keras.layers.Dense(10)
|
|
||||||
])
|
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
def load_mnist():
|
def load_cifar10():
|
||||||
"""Loads MNIST and preprocesses to combine training and validation data."""
|
"""Loads CIFAR10 data."""
|
||||||
(train_data,
|
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
|
||||||
train_labels), (test_data,
|
|
||||||
test_labels) = tf.keras.datasets.mnist.load_data()
|
|
||||||
|
|
||||||
train_data = np.array(train_data, dtype=np.float32) / 255
|
x_train = np.array(x_train, dtype=np.float32) / 255
|
||||||
test_data = np.array(test_data, dtype=np.float32) / 255
|
x_test = np.array(x_test, dtype=np.float32) / 255
|
||||||
|
|
||||||
train_data = train_data.reshape((train_data.shape[0], 28, 28, 1))
|
y_train = np.array(y_train, dtype=np.int32).squeeze()
|
||||||
test_data = test_data.reshape((test_data.shape[0], 28, 28, 1))
|
y_test = np.array(y_test, dtype=np.int32).squeeze()
|
||||||
|
|
||||||
train_labels = np.array(train_labels, dtype=np.int32)
|
return x_train, y_train, x_test, y_test
|
||||||
test_labels = np.array(test_labels, dtype=np.int32)
|
|
||||||
|
|
||||||
return train_data, train_labels, test_data, test_labels
|
|
||||||
|
|
||||||
|
|
||||||
def main(unused_argv):
|
def main(unused_argv):
|
||||||
# Load training and test data.
|
# Load training and test data.
|
||||||
train_data, train_labels, test_data, test_labels = load_mnist()
|
x_train, y_train, x_test, y_test = load_cifar10()
|
||||||
|
|
||||||
# Get model, optimizer and specify loss.
|
# Get model, optimizer and specify loss.
|
||||||
model = cnn_model()
|
model = small_cnn()
|
||||||
optimizer = GradientDescentOptimizer(learning_rate=FLAGS.learning_rate)
|
optimizer = tf.keras.optimizers.SGD(lr=FLAGS.learning_rate, momentum=0.9)
|
||||||
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
|
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
|
||||||
model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])
|
model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])
|
||||||
|
|
||||||
# Get callback for membership inference attack.
|
# Get callback for membership inference attack.
|
||||||
mia_callback = MembershipInferenceCallback(
|
mia_callback = MembershipInferenceCallback(
|
||||||
(train_data, train_labels), (test_data, test_labels),
|
(x_train, y_train),
|
||||||
attack_types=[AttackType.THRESHOLD_ATTACK],
|
(x_test, y_test),
|
||||||
tensorboard_dir=FLAGS.model_dir)
|
slicing_spec=SlicingSpec(entire_dataset=True, by_class=True),
|
||||||
|
attack_types=[AttackType.THRESHOLD_ATTACK,
|
||||||
|
AttackType.K_NEAREST_NEIGHBORS],
|
||||||
|
tensorboard_dir=FLAGS.model_dir,
|
||||||
|
tensorboard_merge_classifiers=FLAGS.tensorboard_merge_classifiers)
|
||||||
|
|
||||||
# Train model with Keras
|
# Train model with Keras
|
||||||
model.fit(
|
model.fit(
|
||||||
train_data,
|
x_train,
|
||||||
train_labels,
|
y_train,
|
||||||
epochs=FLAGS.epochs,
|
epochs=FLAGS.epochs,
|
||||||
validation_data=(test_data, test_labels),
|
validation_data=(x_test, y_test),
|
||||||
batch_size=FLAGS.batch_size,
|
batch_size=FLAGS.batch_size,
|
||||||
callbacks=[mia_callback],
|
callbacks=[mia_callback],
|
||||||
verbose=2)
|
verbose=2)
|
||||||
|
|
||||||
print('End of training attack:')
|
print('End of training attack:')
|
||||||
attack_results = run_attack_on_keras_model(
|
attack_results = run_attack_on_keras_model(
|
||||||
model, (train_data, train_labels), (test_data, test_labels),
|
model, (x_train, y_train), (x_test, y_test),
|
||||||
slicing_spec=SlicingSpec(entire_dataset=True, by_class=True),
|
slicing_spec=SlicingSpec(entire_dataset=True, by_class=True),
|
||||||
attack_types=[
|
attack_types=[
|
||||||
AttackType.THRESHOLD_ATTACK, AttackType.K_NEAREST_NEIGHBORS
|
AttackType.THRESHOLD_ATTACK, AttackType.K_NEAREST_NEIGHBORS
|
||||||
])
|
])
|
||||||
|
att_types, att_slices, att_metrics, att_values = get_flattened_attack_metrics(
|
||||||
attack_properties, attack_values = get_flattened_attack_metrics(
|
|
||||||
attack_results)
|
attack_results)
|
||||||
print('\n'.join([
|
print('\n'.join([' %s: %.4f' % (', '.join([s, t, m]), v) for t, s, m, v in
|
||||||
' %s: %.4f' % (', '.join(p), r)
|
zip(att_types, att_slices, att_metrics, att_values)]))
|
||||||
for p, r in zip(attack_properties, attack_values)
|
|
||||||
]))
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
|
@ -67,9 +67,12 @@ class UtilsTest(absltest.TestCase):
|
||||||
(self.test_data, self.test_labels),
|
(self.test_data, self.test_labels),
|
||||||
attack_types=[AttackType.THRESHOLD_ATTACK])
|
attack_types=[AttackType.THRESHOLD_ATTACK])
|
||||||
self.assertIsInstance(results, AttackResults)
|
self.assertIsInstance(results, AttackResults)
|
||||||
attack_properties, attack_values = get_flattened_attack_metrics(results)
|
att_types, att_slices, att_metrics, att_values = get_flattened_attack_metrics(
|
||||||
self.assertLen(attack_properties, 2)
|
results)
|
||||||
self.assertLen(attack_values, 2)
|
self.assertLen(att_types, 2)
|
||||||
|
self.assertLen(att_slices, 2)
|
||||||
|
self.assertLen(att_metrics, 2)
|
||||||
|
self.assertLen(att_values, 2)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
|
@ -15,21 +15,18 @@
|
||||||
# Lint as: python3
|
# Lint as: python3
|
||||||
"""A hook and a function in tf estimator for membership inference attack."""
|
"""A hook and a function in tf estimator for membership inference attack."""
|
||||||
|
|
||||||
|
import os
|
||||||
from typing import Iterable
|
from typing import Iterable
|
||||||
|
|
||||||
from absl import logging
|
from absl import logging
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
import tensorflow.compat.v1 as tf
|
import tensorflow.compat.v1 as tf
|
||||||
|
|
||||||
from tensorflow_privacy.privacy.membership_inference_attack import membership_inference_attack_new as mia
|
from tensorflow_privacy.privacy.membership_inference_attack import membership_inference_attack_new as mia
|
||||||
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackInputData
|
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackInputData
|
||||||
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackType
|
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackType
|
||||||
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import get_flattened_attack_metrics
|
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import get_flattened_attack_metrics
|
||||||
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import SlicingSpec
|
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import SlicingSpec
|
||||||
from tensorflow_privacy.privacy.membership_inference_attack.utils import log_loss
|
from tensorflow_privacy.privacy.membership_inference_attack.utils import log_loss
|
||||||
from tensorflow_privacy.privacy.membership_inference_attack.utils import write_to_tensorboard
|
from tensorflow_privacy.privacy.membership_inference_attack.utils_tensorboard import write_results_to_tensorboard
|
||||||
|
|
||||||
|
|
||||||
def calculate_losses(estimator, input_fn, labels):
|
def calculate_losses(estimator, input_fn, labels):
|
||||||
|
@ -43,7 +40,7 @@ def calculate_losses(estimator, input_fn, labels):
|
||||||
Args:
|
Args:
|
||||||
estimator: model to make prediction
|
estimator: model to make prediction
|
||||||
input_fn: input function to be used in estimator.predict
|
input_fn: input function to be used in estimator.predict
|
||||||
labels: true labels of samples (integer valued)
|
labels: array of size (n_samples, ), true labels of samples (integer valued)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
preds: probability vector of each sample
|
preds: probability vector of each sample
|
||||||
|
@ -64,7 +61,8 @@ class MembershipInferenceTrainingHook(tf.estimator.SessionRunHook):
|
||||||
input_fn_constructor,
|
input_fn_constructor,
|
||||||
slicing_spec: SlicingSpec = None,
|
slicing_spec: SlicingSpec = None,
|
||||||
attack_types: Iterable[AttackType] = (AttackType.THRESHOLD_ATTACK,),
|
attack_types: Iterable[AttackType] = (AttackType.THRESHOLD_ATTACK,),
|
||||||
writer=None):
|
tensorboard_dir=None,
|
||||||
|
tensorboard_merge_classifiers=False):
|
||||||
"""Initialize the hook.
|
"""Initialize the hook.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
|
@ -75,7 +73,9 @@ class MembershipInferenceTrainingHook(tf.estimator.SessionRunHook):
|
||||||
the input_fn for model prediction
|
the input_fn for model prediction
|
||||||
slicing_spec: slicing specification of the attack
|
slicing_spec: slicing specification of the attack
|
||||||
attack_types: a list of attacks, each of type AttackType
|
attack_types: a list of attacks, each of type AttackType
|
||||||
writer: summary writer for tensorboard
|
tensorboard_dir: directory for tensorboard summary
|
||||||
|
tensorboard_merge_classifiers: if true, plot different classifiers with
|
||||||
|
the same slicing_spec and metric in the same figure
|
||||||
"""
|
"""
|
||||||
in_train_data, self._in_train_labels = in_train
|
in_train_data, self._in_train_labels = in_train
|
||||||
out_train_data, self._out_train_labels = out_train
|
out_train_data, self._out_train_labels = out_train
|
||||||
|
@ -88,9 +88,21 @@ class MembershipInferenceTrainingHook(tf.estimator.SessionRunHook):
|
||||||
self._estimator = estimator
|
self._estimator = estimator
|
||||||
self._slicing_spec = slicing_spec
|
self._slicing_spec = slicing_spec
|
||||||
self._attack_types = attack_types
|
self._attack_types = attack_types
|
||||||
self._writer = writer
|
self._tensorboard_merge_classifiers = tensorboard_merge_classifiers
|
||||||
if self._writer:
|
if tensorboard_dir:
|
||||||
|
if tensorboard_merge_classifiers:
|
||||||
|
self._writers = {}
|
||||||
|
with tf.Graph().as_default():
|
||||||
|
for attack_type in attack_types:
|
||||||
|
self._writers[attack_type.name] = tf.summary.FileWriter(
|
||||||
|
os.path.join(tensorboard_dir, 'MI', attack_type.name))
|
||||||
|
else:
|
||||||
|
with tf.Graph().as_default():
|
||||||
|
self._writers = tf.summary.FileWriter(
|
||||||
|
os.path.join(tensorboard_dir, 'MI'))
|
||||||
logging.info('Will write to tensorboard.')
|
logging.info('Will write to tensorboard.')
|
||||||
|
else:
|
||||||
|
self._writers = None
|
||||||
|
|
||||||
def end(self, session):
|
def end(self, session):
|
||||||
results = run_attack_helper(self._estimator,
|
results = run_attack_helper(self._estimator,
|
||||||
|
@ -101,16 +113,17 @@ class MembershipInferenceTrainingHook(tf.estimator.SessionRunHook):
|
||||||
self._attack_types)
|
self._attack_types)
|
||||||
logging.info(results)
|
logging.info(results)
|
||||||
|
|
||||||
attack_properties, attack_values = get_flattened_attack_metrics(results)
|
att_types, att_slices, att_metrics, att_values = get_flattened_attack_metrics(
|
||||||
|
results)
|
||||||
print('Attack result:')
|
print('Attack result:')
|
||||||
print('\n'.join([' %s: %.4f' % (', '.join(p), r) for p, r in
|
print('\n'.join([' %s: %.4f' % (', '.join([s, t, m]), v) for t, s, m, v in
|
||||||
zip(attack_properties, attack_values)]))
|
zip(att_types, att_slices, att_metrics, att_values)]))
|
||||||
|
|
||||||
# Write to tensorboard if writer is specified
|
# Write to tensorboard if tensorboard_dir is specified
|
||||||
global_step = self._estimator.get_variable_value('global_step')
|
global_step = self._estimator.get_variable_value('global_step')
|
||||||
attack_property_tags = ['attack/' + '_'.join(p) for p in attack_properties]
|
if self._writers is not None:
|
||||||
write_to_tensorboard(self._writer, attack_property_tags, attack_values,
|
write_results_to_tensorboard(results, self._writers, global_step,
|
||||||
global_step)
|
self._tensorboard_merge_classifiers)
|
||||||
|
|
||||||
|
|
||||||
def run_attack_on_tf_estimator_model(
|
def run_attack_on_tf_estimator_model(
|
||||||
|
@ -184,4 +197,3 @@ def run_attack_helper(
|
||||||
slicing_spec=slicing_spec,
|
slicing_spec=slicing_spec,
|
||||||
attack_types=attack_types)
|
attack_types=attack_types)
|
||||||
return results
|
return results
|
||||||
|
|
||||||
|
|
|
@ -27,30 +27,27 @@ from tensorflow_privacy.privacy.membership_inference_attack.data_structures impo
|
||||||
from tensorflow_privacy.privacy.membership_inference_attack.tf_estimator_evaluation import MembershipInferenceTrainingHook
|
from tensorflow_privacy.privacy.membership_inference_attack.tf_estimator_evaluation import MembershipInferenceTrainingHook
|
||||||
from tensorflow_privacy.privacy.membership_inference_attack.tf_estimator_evaluation import run_attack_on_tf_estimator_model
|
from tensorflow_privacy.privacy.membership_inference_attack.tf_estimator_evaluation import run_attack_on_tf_estimator_model
|
||||||
|
|
||||||
GradientDescentOptimizer = tf.train.GradientDescentOptimizer
|
|
||||||
|
|
||||||
FLAGS = flags.FLAGS
|
FLAGS = flags.FLAGS
|
||||||
|
flags.DEFINE_float('learning_rate', 0.02, 'Learning rate for training')
|
||||||
flags.DEFINE_float('learning_rate', .15, 'Learning rate for training')
|
flags.DEFINE_integer('batch_size', 250, 'Batch size')
|
||||||
flags.DEFINE_integer('batch_size', 256, 'Batch size')
|
flags.DEFINE_integer('epochs', 100, 'Number of epochs')
|
||||||
flags.DEFINE_integer('epochs', 10, 'Number of epochs')
|
|
||||||
flags.DEFINE_string('model_dir', None, 'Model directory.')
|
flags.DEFINE_string('model_dir', None, 'Model directory.')
|
||||||
|
flags.DEFINE_bool('tensorboard_merge_classifiers', False, 'If true, plot '
|
||||||
|
'different classifiers with the same slicing_spec and metric '
|
||||||
|
'in the same figure.')
|
||||||
|
|
||||||
|
|
||||||
def cnn_model_fn(features, labels, mode):
|
def small_cnn_fn(features, labels, mode):
|
||||||
"""Model function for a CNN."""
|
"""Setup a small CNN for image classification."""
|
||||||
|
input_layer = tf.reshape(features['x'], [-1, 32, 32, 3])
|
||||||
|
for _ in range(3):
|
||||||
|
y = tf.keras.layers.Conv2D(32, (3, 3), activation='relu')(input_layer)
|
||||||
|
y = tf.keras.layers.MaxPool2D()(y)
|
||||||
|
|
||||||
# Define CNN architecture using tf.keras.layers.
|
y = tf.keras.layers.Flatten()(y)
|
||||||
input_layer = tf.reshape(features['x'], [-1, 28, 28, 1])
|
y = tf.keras.layers.Dense(64, activation='relu')(y)
|
||||||
y = tf.keras.layers.Conv2D(
|
logits = tf.keras.layers.Dense(10)(y)
|
||||||
16, 8, strides=2, padding='same', activation='relu').apply(input_layer)
|
|
||||||
y = tf.keras.layers.MaxPool2D(2, 1).apply(y)
|
|
||||||
y = tf.keras.layers.Conv2D(
|
|
||||||
32, 4, strides=2, padding='valid', activation='relu').apply(y)
|
|
||||||
y = tf.keras.layers.MaxPool2D(2, 1).apply(y)
|
|
||||||
y = tf.keras.layers.Flatten().apply(y)
|
|
||||||
y = tf.keras.layers.Dense(32, activation='relu').apply(y)
|
|
||||||
logits = tf.keras.layers.Dense(10).apply(y)
|
|
||||||
|
|
||||||
if mode != tf.estimator.ModeKeys.PREDICT:
|
if mode != tf.estimator.ModeKeys.PREDICT:
|
||||||
vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
|
vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
|
||||||
|
@ -59,7 +56,8 @@ def cnn_model_fn(features, labels, mode):
|
||||||
|
|
||||||
# Configure the training op (for TRAIN mode).
|
# Configure the training op (for TRAIN mode).
|
||||||
if mode == tf.estimator.ModeKeys.TRAIN:
|
if mode == tf.estimator.ModeKeys.TRAIN:
|
||||||
optimizer = GradientDescentOptimizer(learning_rate=FLAGS.learning_rate)
|
optimizer = tf.train.MomentumOptimizer(learning_rate=FLAGS.learning_rate,
|
||||||
|
momentum=0.9)
|
||||||
global_step = tf.train.get_global_step()
|
global_step = tf.train.get_global_step()
|
||||||
train_op = optimizer.minimize(loss=scalar_loss, global_step=global_step)
|
train_op = optimizer.minimize(loss=scalar_loss, global_step=global_step)
|
||||||
return tf.estimator.EstimatorSpec(
|
return tf.estimator.EstimatorSpec(
|
||||||
|
@ -81,19 +79,17 @@ def cnn_model_fn(features, labels, mode):
|
||||||
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
|
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
|
||||||
|
|
||||||
|
|
||||||
def load_mnist():
|
def load_cifar10():
|
||||||
"""Loads MNIST and preprocesses to combine training and validation data."""
|
"""Loads CIFAR10 data."""
|
||||||
(train_data,
|
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
|
||||||
train_labels), (test_data,
|
|
||||||
test_labels) = tf.keras.datasets.mnist.load_data()
|
|
||||||
|
|
||||||
train_data = np.array(train_data, dtype=np.float32) / 255
|
x_train = np.array(x_train, dtype=np.float32) / 255
|
||||||
test_data = np.array(test_data, dtype=np.float32) / 255
|
x_test = np.array(x_test, dtype=np.float32) / 255
|
||||||
|
|
||||||
train_labels = np.array(train_labels, dtype=np.int32)
|
y_train = np.array(y_train, dtype=np.int32).squeeze()
|
||||||
test_labels = np.array(test_labels, dtype=np.int32)
|
y_test = np.array(y_test, dtype=np.int32).squeeze()
|
||||||
|
|
||||||
return train_data, train_labels, test_data, test_labels
|
return x_train, y_train, x_test, y_test
|
||||||
|
|
||||||
|
|
||||||
def main(unused_argv):
|
def main(unused_argv):
|
||||||
|
@ -103,39 +99,38 @@ def main(unused_argv):
|
||||||
logging.get_absl_handler().use_absl_log_file()
|
logging.get_absl_handler().use_absl_log_file()
|
||||||
|
|
||||||
# Load training and test data.
|
# Load training and test data.
|
||||||
train_data, train_labels, test_data, test_labels = load_mnist()
|
x_train, y_train, x_test, y_test = load_cifar10()
|
||||||
|
|
||||||
# Instantiate the tf.Estimator.
|
# Instantiate the tf.Estimator.
|
||||||
mnist_classifier = tf.estimator.Estimator(
|
mnist_classifier = tf.estimator.Estimator(
|
||||||
model_fn=cnn_model_fn, model_dir=FLAGS.model_dir)
|
model_fn=small_cnn_fn, model_dir=FLAGS.model_dir)
|
||||||
|
|
||||||
# A function to construct input_fn given (data, label), to be used by the
|
# A function to construct input_fn given (data, label), to be used by the
|
||||||
# membership inference training hook.
|
# membership inference training hook.
|
||||||
def input_fn_constructor(x, y):
|
def input_fn_constructor(x, y):
|
||||||
return tf.estimator.inputs.numpy_input_fn(x={'x': x}, y=y, shuffle=False)
|
return tf.estimator.inputs.numpy_input_fn(x={'x': x}, y=y, shuffle=False)
|
||||||
|
|
||||||
with tf.Graph().as_default():
|
# Get hook for membership inference attack.
|
||||||
# Get a summary writer for the hook to write to tensorboard.
|
|
||||||
# Can set summary_writer to None if not needed.
|
|
||||||
if FLAGS.model_dir:
|
|
||||||
summary_writer = tf.summary.FileWriter(FLAGS.model_dir)
|
|
||||||
else:
|
|
||||||
summary_writer = None
|
|
||||||
mia_hook = MembershipInferenceTrainingHook(
|
mia_hook = MembershipInferenceTrainingHook(
|
||||||
mnist_classifier, (train_data, train_labels), (test_data, test_labels),
|
mnist_classifier,
|
||||||
|
(x_train, y_train),
|
||||||
|
(x_test, y_test),
|
||||||
input_fn_constructor,
|
input_fn_constructor,
|
||||||
attack_types=[AttackType.THRESHOLD_ATTACK],
|
slicing_spec=SlicingSpec(entire_dataset=True, by_class=True),
|
||||||
writer=summary_writer)
|
attack_types=[AttackType.THRESHOLD_ATTACK,
|
||||||
|
AttackType.K_NEAREST_NEIGHBORS],
|
||||||
|
tensorboard_dir=FLAGS.model_dir,
|
||||||
|
tensorboard_merge_classifiers=FLAGS.tensorboard_merge_classifiers)
|
||||||
|
|
||||||
# Create tf.Estimator input functions for the training and test data.
|
# Create tf.Estimator input functions for the training and test data.
|
||||||
train_input_fn = tf.estimator.inputs.numpy_input_fn(
|
train_input_fn = tf.estimator.inputs.numpy_input_fn(
|
||||||
x={'x': train_data},
|
x={'x': x_train},
|
||||||
y=train_labels,
|
y=y_train,
|
||||||
batch_size=FLAGS.batch_size,
|
batch_size=FLAGS.batch_size,
|
||||||
num_epochs=FLAGS.epochs,
|
num_epochs=FLAGS.epochs,
|
||||||
shuffle=True)
|
shuffle=True)
|
||||||
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
|
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
|
||||||
x={'x': test_data}, y=test_labels, num_epochs=1, shuffle=False)
|
x={'x': x_test}, y=y_test, num_epochs=1, shuffle=False)
|
||||||
|
|
||||||
# Training loop.
|
# Training loop.
|
||||||
steps_per_epoch = 60000 // FLAGS.batch_size
|
steps_per_epoch = 60000 // FLAGS.batch_size
|
||||||
|
@ -151,18 +146,15 @@ def main(unused_argv):
|
||||||
|
|
||||||
print('End of training attack')
|
print('End of training attack')
|
||||||
attack_results = run_attack_on_tf_estimator_model(
|
attack_results = run_attack_on_tf_estimator_model(
|
||||||
mnist_classifier, (train_data, train_labels), (test_data, test_labels),
|
mnist_classifier, (x_train, y_train), (x_test, y_test),
|
||||||
input_fn_constructor,
|
input_fn_constructor,
|
||||||
slicing_spec=SlicingSpec(entire_dataset=True, by_class=True),
|
slicing_spec=SlicingSpec(entire_dataset=True, by_class=True),
|
||||||
attack_types=[
|
attack_types=[AttackType.THRESHOLD_ATTACK, AttackType.K_NEAREST_NEIGHBORS]
|
||||||
AttackType.THRESHOLD_ATTACK, AttackType.K_NEAREST_NEIGHBORS
|
)
|
||||||
])
|
att_types, att_slices, att_metrics, att_values = get_flattened_attack_metrics(
|
||||||
attack_properties, attack_values = get_flattened_attack_metrics(
|
|
||||||
attack_results)
|
attack_results)
|
||||||
print('\n'.join([
|
print('\n'.join([' %s: %.4f' % (', '.join([s, t, m]), v) for t, s, m, v in
|
||||||
' %s: %.4f' % (', '.join(p), r)
|
zip(att_types, att_slices, att_metrics, att_values)]))
|
||||||
for p, r in zip(attack_properties, attack_values)
|
|
||||||
]))
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
|
@ -88,9 +88,12 @@ class UtilsTest(absltest.TestCase):
|
||||||
self.test_labels,
|
self.test_labels,
|
||||||
attack_types=[AttackType.THRESHOLD_ATTACK])
|
attack_types=[AttackType.THRESHOLD_ATTACK])
|
||||||
self.assertIsInstance(results, AttackResults)
|
self.assertIsInstance(results, AttackResults)
|
||||||
attack_properties, attack_values = get_flattened_attack_metrics(results)
|
att_types, att_slices, att_metrics, att_values = get_flattened_attack_metrics(
|
||||||
self.assertLen(attack_properties, 2)
|
results)
|
||||||
self.assertLen(attack_values, 2)
|
self.assertLen(att_types, 2)
|
||||||
|
self.assertLen(att_slices, 2)
|
||||||
|
self.assertLen(att_metrics, 2)
|
||||||
|
self.assertLen(att_values, 2)
|
||||||
|
|
||||||
def test_run_attack_on_tf_estimator_model(self):
|
def test_run_attack_on_tf_estimator_model(self):
|
||||||
"""Test the attack on the final models."""
|
"""Test the attack on the final models."""
|
||||||
|
@ -104,9 +107,12 @@ class UtilsTest(absltest.TestCase):
|
||||||
input_fn_constructor,
|
input_fn_constructor,
|
||||||
attack_types=[AttackType.THRESHOLD_ATTACK])
|
attack_types=[AttackType.THRESHOLD_ATTACK])
|
||||||
self.assertIsInstance(results, AttackResults)
|
self.assertIsInstance(results, AttackResults)
|
||||||
attack_properties, attack_values = get_flattened_attack_metrics(results)
|
att_types, att_slices, att_metrics, att_values = get_flattened_attack_metrics(
|
||||||
self.assertLen(attack_properties, 2)
|
results)
|
||||||
self.assertLen(attack_values, 2)
|
self.assertLen(att_types, 2)
|
||||||
|
self.assertLen(att_slices, 2)
|
||||||
|
self.assertLen(att_metrics, 2)
|
||||||
|
self.assertLen(att_values, 2)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
|
@ -20,7 +20,7 @@ from typing import Text, Dict, Union, List, Any, Tuple
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import scipy.special
|
import scipy.special
|
||||||
from sklearn import metrics
|
from sklearn import metrics
|
||||||
import tensorflow.compat.v1 as tf
|
|
||||||
|
|
||||||
ArrayDict = Dict[Text, np.ndarray]
|
ArrayDict = Dict[Text, np.ndarray]
|
||||||
Dataset = Tuple[Tuple[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray]]
|
Dataset = Tuple[Tuple[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray]]
|
||||||
|
@ -229,10 +229,12 @@ def log_loss(labels: np.ndarray, pred: np.ndarray, small_value=1e-8):
|
||||||
"""Compute the cross entropy loss.
|
"""Compute the cross entropy loss.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
labels: numpy array, labels[i] is the true label (scalar) of the i-th sample
|
labels: numpy array of shape (num_samples,) labels[i] is the true label
|
||||||
pred: numpy array, pred[i] is the probability vector of the i-th sample
|
(scalar) of the i-th sample
|
||||||
small_value: np.log can become -inf if the probability is too close to 0, so
|
pred: numpy array of shape(num_samples, num_classes) where pred[i] is the
|
||||||
the probability is clipped below by small_value.
|
probability vector of the i-th sample
|
||||||
|
small_value: a scalar. np.log can become -inf if the probability is too
|
||||||
|
close to 0, so the probability is clipped below by small_value.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
the cross-entropy loss of each sample
|
the cross-entropy loss of each sample
|
||||||
|
@ -243,26 +245,3 @@ def log_loss(labels: np.ndarray, pred: np.ndarray, small_value=1e-8):
|
||||||
def log_loss_from_logits(labels: np.ndarray, logits: np.ndarray):
|
def log_loss_from_logits(labels: np.ndarray, logits: np.ndarray):
|
||||||
"""Compute the cross entropy loss from logits."""
|
"""Compute the cross entropy loss from logits."""
|
||||||
return log_loss(labels, scipy.special.softmax(logits, axis=-1))
|
return log_loss(labels, scipy.special.softmax(logits, axis=-1))
|
||||||
|
|
||||||
|
|
||||||
# ------------------------------------------------------------------------------
|
|
||||||
# Tensorboard
|
|
||||||
# ------------------------------------------------------------------------------
|
|
||||||
|
|
||||||
|
|
||||||
def write_to_tensorboard(writer, tags, values, step):
|
|
||||||
"""Write metrics to tensorboard.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
writer: tensorboard writer
|
|
||||||
tags: a list of tags of metrics
|
|
||||||
values: a list of values of metrics
|
|
||||||
step: step for the summary
|
|
||||||
"""
|
|
||||||
if writer is None:
|
|
||||||
return
|
|
||||||
summary = tf.Summary()
|
|
||||||
for tag, val in zip(tags, values):
|
|
||||||
summary.value.add(tag=tag, simple_value=val)
|
|
||||||
writer.add_summary(summary, step)
|
|
||||||
writer.flush()
|
|
||||||
|
|
|
@ -0,0 +1,79 @@
|
||||||
|
# Copyright 2020, The TensorFlow Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
# Lint as: python3
|
||||||
|
"""Utility functions for writing attack results to tensorboard."""
|
||||||
|
from typing import List
|
||||||
|
from typing import Union
|
||||||
|
|
||||||
|
import tensorflow.compat.v1 as tf
|
||||||
|
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackResults
|
||||||
|
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import get_flattened_attack_metrics
|
||||||
|
|
||||||
|
|
||||||
|
def write_to_tensorboard(writers, tags, values, step):
|
||||||
|
"""Write metrics to tensorboard.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
writers: a list of tensorboard writers or one writer to be used for metrics.
|
||||||
|
If it's a list, it should be of the same length as tags
|
||||||
|
tags: a list of tags of metrics
|
||||||
|
values: a list of values of metrics with the same length as tags
|
||||||
|
step: step for the tensorboard summary
|
||||||
|
"""
|
||||||
|
if writers is None or not writers:
|
||||||
|
raise ValueError('write_to_tensorboard does not get any writer.')
|
||||||
|
|
||||||
|
if not isinstance(writers, list):
|
||||||
|
writers = [writers] * len(tags)
|
||||||
|
|
||||||
|
assert len(writers) == len(tags) == len(values)
|
||||||
|
|
||||||
|
for writer, tag, val in zip(writers, tags, values):
|
||||||
|
summary = tf.Summary()
|
||||||
|
summary.value.add(tag=tag, simple_value=val)
|
||||||
|
writer.add_summary(summary, step)
|
||||||
|
|
||||||
|
for writer in set(writers):
|
||||||
|
writer.flush()
|
||||||
|
|
||||||
|
|
||||||
|
def write_results_to_tensorboard(
|
||||||
|
attack_results: AttackResults,
|
||||||
|
writers: Union[tf.summary.FileWriter, List[tf.summary.FileWriter]],
|
||||||
|
step: int,
|
||||||
|
merge_classifiers: bool):
|
||||||
|
"""Write attack results to tensorboard.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
attack_results: results from attack
|
||||||
|
writers: a list of tensorboard writers or one writer to be used for metrics
|
||||||
|
step: step for the tensorboard summary
|
||||||
|
merge_classifiers: if true, plot different classifiers with the same
|
||||||
|
slicing_spec and metric in the same figure
|
||||||
|
"""
|
||||||
|
if writers is None or not writers:
|
||||||
|
raise ValueError('write_results_to_tensorboard does not get any writer.')
|
||||||
|
|
||||||
|
att_types, att_slices, att_metrics, att_values = get_flattened_attack_metrics(
|
||||||
|
attack_results)
|
||||||
|
if merge_classifiers:
|
||||||
|
att_tags = ['attack/' + '_'.join([s, m]) for s, m in
|
||||||
|
zip(att_slices, att_metrics)]
|
||||||
|
write_to_tensorboard([writers[t] for t in att_types],
|
||||||
|
att_tags, att_values, step)
|
||||||
|
else:
|
||||||
|
att_tags = ['attack/' + '_'.join([s, t, m]) for t, s, m in
|
||||||
|
zip(att_types, att_slices, att_metrics)]
|
||||||
|
write_to_tensorboard(writers, att_tags, att_values, step)
|
Loading…
Reference in a new issue