Option for plotting attack results in the same figure.

PiperOrigin-RevId: 333225502
This commit is contained in:
Shuang Song 2020-09-22 22:11:37 -07:00 committed by A. Unique TensorFlower
parent 677b3d9e9a
commit 7c53757250
9 changed files with 261 additions and 186 deletions

View file

@ -573,18 +573,19 @@ def get_flattened_attack_metrics(results: AttackResults):
results: membership inference attack results.
Returns:
properties: a list of (slice, attack_type, metric name)
types: a list of attack types
slices: a list of slices
attack_metrics: a list of metric names
values: a list of metric values, i-th element correspond to properties[i]
"""
properties = []
types = []
slices = []
attack_metrics = []
values = []
for attack_result in results.single_attack_results:
slice_spec = attack_result.slice_spec
prop = [str(slice_spec), str(attack_result.attack_type)]
properties += [prop + ['adv'], prop + ['auc']]
values += [
float(attack_result.get_attacker_advantage()),
float(attack_result.get_auc())
]
return properties, values
types += [str(attack_result.attack_type)] * 2
slices += [str(attack_result.slice_spec)] * 2
attack_metrics += ['adv', 'auc']
values += [float(attack_result.get_attacker_advantage()),
float(attack_result.get_auc())]
return types, slices, attack_metrics, values

View file

@ -15,8 +15,8 @@
# Lint as: python3
"""A callback and a function in keras for membership inference attack."""
import os
from typing import Iterable
from absl import logging
import tensorflow.compat.v1 as tf
@ -27,7 +27,7 @@ from tensorflow_privacy.privacy.membership_inference_attack.data_structures impo
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import get_flattened_attack_metrics
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import SlicingSpec
from tensorflow_privacy.privacy.membership_inference_attack.utils import log_loss
from tensorflow_privacy.privacy.membership_inference_attack.utils import write_to_tensorboard
from tensorflow_privacy.privacy.membership_inference_attack.utils_tensorboard import write_results_to_tensorboard
def calculate_losses(model, data, labels):
@ -55,7 +55,8 @@ class MembershipInferenceCallback(tf.keras.callbacks.Callback):
in_train, out_train,
slicing_spec: SlicingSpec = None,
attack_types: Iterable[AttackType] = (AttackType.THRESHOLD_ATTACK,),
tensorboard_dir=None):
tensorboard_dir=None,
tensorboard_merge_classifiers=False):
"""Initalizes the callback.
Args:
@ -64,18 +65,28 @@ class MembershipInferenceCallback(tf.keras.callbacks.Callback):
slicing_spec: slicing specification of the attack
attack_types: a list of attacks, each of type AttackType
tensorboard_dir: directory for tensorboard summary
tensorboard_merge_classifiers: if true, plot different classifiers with
the same slicing_spec and metric in the same figure
"""
self._in_train_data, self._in_train_labels = in_train
self._out_train_data, self._out_train_labels = out_train
self._slicing_spec = slicing_spec
self._attack_types = attack_types
# Setup tensorboard writer if tensorboard_dir is specified
self._tensorboard_merge_classifiers = tensorboard_merge_classifiers
if tensorboard_dir:
if tensorboard_merge_classifiers:
self._writers = {}
with tf.Graph().as_default():
self._writer = tf.summary.FileWriter(tensorboard_dir)
for attack_type in attack_types:
self._writers[attack_type.name] = tf.summary.FileWriter(
os.path.join(tensorboard_dir, 'MI', attack_type.name))
else:
with tf.Graph().as_default():
self._writers = tf.summary.FileWriter(
os.path.join(tensorboard_dir, 'MI'))
logging.info('Will write to tensorboard.')
else:
self._writer = None
self._writers = None
def on_epoch_end(self, epoch, logs=None):
results = run_attack_on_keras_model(
@ -86,15 +97,16 @@ class MembershipInferenceCallback(tf.keras.callbacks.Callback):
self._attack_types)
logging.info(results)
attack_properties, attack_values = get_flattened_attack_metrics(results)
att_types, att_slices, att_metrics, att_values = get_flattened_attack_metrics(
results)
print('Attack result:')
print('\n'.join([' %s: %.4f' % (', '.join(p), r) for p, r in
zip(attack_properties, attack_values)]))
print('\n'.join([' %s: %.4f' % (', '.join([s, t, m]), v) for t, s, m, v in
zip(att_types, att_slices, att_metrics, att_values)]))
# Write to tensorboard if tensorboard_dir is specified
attack_property_tags = ['attack/' + '_'.join(p) for p in attack_properties]
write_to_tensorboard(self._writer, attack_property_tags, attack_values,
epoch)
if self._writers is not None:
write_results_to_tensorboard(results, self._writers, epoch,
self._tensorboard_merge_classifiers)
def run_attack_on_keras_model(

View file

@ -26,95 +26,86 @@ from tensorflow_privacy.privacy.membership_inference_attack.data_structures impo
from tensorflow_privacy.privacy.membership_inference_attack.keras_evaluation import MembershipInferenceCallback
from tensorflow_privacy.privacy.membership_inference_attack.keras_evaluation import run_attack_on_keras_model
GradientDescentOptimizer = tf.train.GradientDescentOptimizer
FLAGS = flags.FLAGS
flags.DEFINE_float('learning_rate', .15, 'Learning rate for training')
flags.DEFINE_integer('batch_size', 256, 'Batch size')
flags.DEFINE_integer('epochs', 10, 'Number of epochs')
flags.DEFINE_float('learning_rate', 0.02, 'Learning rate for training')
flags.DEFINE_integer('batch_size', 250, 'Batch size')
flags.DEFINE_integer('epochs', 100, 'Number of epochs')
flags.DEFINE_string('model_dir', None, 'Model directory.')
flags.DEFINE_bool('tensorboard_merge_classifiers', False, 'If true, plot '
'different classifiers with the same slicing_spec and metric '
'in the same figure.')
def cnn_model():
"""Define a CNN model."""
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(
16,
8,
strides=2,
padding='same',
activation='relu',
input_shape=(28, 28, 1)),
tf.keras.layers.MaxPool2D(2, 1),
tf.keras.layers.Conv2D(
32, 4, strides=2, padding='valid', activation='relu'),
tf.keras.layers.MaxPool2D(2, 1),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(32, activation='relu'),
tf.keras.layers.Dense(10)
])
def small_cnn():
"""Setup a small CNN for image classification."""
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Input(shape=(32, 32, 3)))
for _ in range(3):
model.add(tf.keras.layers.Conv2D(32, (3, 3), activation='relu'))
model.add(tf.keras.layers.MaxPooling2D())
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(64, activation='relu'))
model.add(tf.keras.layers.Dense(10))
return model
def load_mnist():
"""Loads MNIST and preprocesses to combine training and validation data."""
(train_data,
train_labels), (test_data,
test_labels) = tf.keras.datasets.mnist.load_data()
def load_cifar10():
"""Loads CIFAR10 data."""
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
train_data = np.array(train_data, dtype=np.float32) / 255
test_data = np.array(test_data, dtype=np.float32) / 255
x_train = np.array(x_train, dtype=np.float32) / 255
x_test = np.array(x_test, dtype=np.float32) / 255
train_data = train_data.reshape((train_data.shape[0], 28, 28, 1))
test_data = test_data.reshape((test_data.shape[0], 28, 28, 1))
y_train = np.array(y_train, dtype=np.int32).squeeze()
y_test = np.array(y_test, dtype=np.int32).squeeze()
train_labels = np.array(train_labels, dtype=np.int32)
test_labels = np.array(test_labels, dtype=np.int32)
return train_data, train_labels, test_data, test_labels
return x_train, y_train, x_test, y_test
def main(unused_argv):
# Load training and test data.
train_data, train_labels, test_data, test_labels = load_mnist()
x_train, y_train, x_test, y_test = load_cifar10()
# Get model, optimizer and specify loss.
model = cnn_model()
optimizer = GradientDescentOptimizer(learning_rate=FLAGS.learning_rate)
model = small_cnn()
optimizer = tf.keras.optimizers.SGD(lr=FLAGS.learning_rate, momentum=0.9)
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])
# Get callback for membership inference attack.
mia_callback = MembershipInferenceCallback(
(train_data, train_labels), (test_data, test_labels),
attack_types=[AttackType.THRESHOLD_ATTACK],
tensorboard_dir=FLAGS.model_dir)
(x_train, y_train),
(x_test, y_test),
slicing_spec=SlicingSpec(entire_dataset=True, by_class=True),
attack_types=[AttackType.THRESHOLD_ATTACK,
AttackType.K_NEAREST_NEIGHBORS],
tensorboard_dir=FLAGS.model_dir,
tensorboard_merge_classifiers=FLAGS.tensorboard_merge_classifiers)
# Train model with Keras
model.fit(
train_data,
train_labels,
x_train,
y_train,
epochs=FLAGS.epochs,
validation_data=(test_data, test_labels),
validation_data=(x_test, y_test),
batch_size=FLAGS.batch_size,
callbacks=[mia_callback],
verbose=2)
print('End of training attack:')
attack_results = run_attack_on_keras_model(
model, (train_data, train_labels), (test_data, test_labels),
model, (x_train, y_train), (x_test, y_test),
slicing_spec=SlicingSpec(entire_dataset=True, by_class=True),
attack_types=[
AttackType.THRESHOLD_ATTACK, AttackType.K_NEAREST_NEIGHBORS
])
attack_properties, attack_values = get_flattened_attack_metrics(
att_types, att_slices, att_metrics, att_values = get_flattened_attack_metrics(
attack_results)
print('\n'.join([
' %s: %.4f' % (', '.join(p), r)
for p, r in zip(attack_properties, attack_values)
]))
print('\n'.join([' %s: %.4f' % (', '.join([s, t, m]), v) for t, s, m, v in
zip(att_types, att_slices, att_metrics, att_values)]))
if __name__ == '__main__':

View file

@ -67,9 +67,12 @@ class UtilsTest(absltest.TestCase):
(self.test_data, self.test_labels),
attack_types=[AttackType.THRESHOLD_ATTACK])
self.assertIsInstance(results, AttackResults)
attack_properties, attack_values = get_flattened_attack_metrics(results)
self.assertLen(attack_properties, 2)
self.assertLen(attack_values, 2)
att_types, att_slices, att_metrics, att_values = get_flattened_attack_metrics(
results)
self.assertLen(att_types, 2)
self.assertLen(att_slices, 2)
self.assertLen(att_metrics, 2)
self.assertLen(att_values, 2)
if __name__ == '__main__':

View file

@ -15,21 +15,18 @@
# Lint as: python3
"""A hook and a function in tf estimator for membership inference attack."""
import os
from typing import Iterable
from absl import logging
import numpy as np
import tensorflow.compat.v1 as tf
from tensorflow_privacy.privacy.membership_inference_attack import membership_inference_attack_new as mia
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackInputData
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackType
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import get_flattened_attack_metrics
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import SlicingSpec
from tensorflow_privacy.privacy.membership_inference_attack.utils import log_loss
from tensorflow_privacy.privacy.membership_inference_attack.utils import write_to_tensorboard
from tensorflow_privacy.privacy.membership_inference_attack.utils_tensorboard import write_results_to_tensorboard
def calculate_losses(estimator, input_fn, labels):
@ -43,7 +40,7 @@ def calculate_losses(estimator, input_fn, labels):
Args:
estimator: model to make prediction
input_fn: input function to be used in estimator.predict
labels: true labels of samples (integer valued)
labels: array of size (n_samples, ), true labels of samples (integer valued)
Returns:
preds: probability vector of each sample
@ -64,7 +61,8 @@ class MembershipInferenceTrainingHook(tf.estimator.SessionRunHook):
input_fn_constructor,
slicing_spec: SlicingSpec = None,
attack_types: Iterable[AttackType] = (AttackType.THRESHOLD_ATTACK,),
writer=None):
tensorboard_dir=None,
tensorboard_merge_classifiers=False):
"""Initialize the hook.
Args:
@ -75,7 +73,9 @@ class MembershipInferenceTrainingHook(tf.estimator.SessionRunHook):
the input_fn for model prediction
slicing_spec: slicing specification of the attack
attack_types: a list of attacks, each of type AttackType
writer: summary writer for tensorboard
tensorboard_dir: directory for tensorboard summary
tensorboard_merge_classifiers: if true, plot different classifiers with
the same slicing_spec and metric in the same figure
"""
in_train_data, self._in_train_labels = in_train
out_train_data, self._out_train_labels = out_train
@ -88,9 +88,21 @@ class MembershipInferenceTrainingHook(tf.estimator.SessionRunHook):
self._estimator = estimator
self._slicing_spec = slicing_spec
self._attack_types = attack_types
self._writer = writer
if self._writer:
self._tensorboard_merge_classifiers = tensorboard_merge_classifiers
if tensorboard_dir:
if tensorboard_merge_classifiers:
self._writers = {}
with tf.Graph().as_default():
for attack_type in attack_types:
self._writers[attack_type.name] = tf.summary.FileWriter(
os.path.join(tensorboard_dir, 'MI', attack_type.name))
else:
with tf.Graph().as_default():
self._writers = tf.summary.FileWriter(
os.path.join(tensorboard_dir, 'MI'))
logging.info('Will write to tensorboard.')
else:
self._writers = None
def end(self, session):
results = run_attack_helper(self._estimator,
@ -101,16 +113,17 @@ class MembershipInferenceTrainingHook(tf.estimator.SessionRunHook):
self._attack_types)
logging.info(results)
attack_properties, attack_values = get_flattened_attack_metrics(results)
att_types, att_slices, att_metrics, att_values = get_flattened_attack_metrics(
results)
print('Attack result:')
print('\n'.join([' %s: %.4f' % (', '.join(p), r) for p, r in
zip(attack_properties, attack_values)]))
print('\n'.join([' %s: %.4f' % (', '.join([s, t, m]), v) for t, s, m, v in
zip(att_types, att_slices, att_metrics, att_values)]))
# Write to tensorboard if writer is specified
# Write to tensorboard if tensorboard_dir is specified
global_step = self._estimator.get_variable_value('global_step')
attack_property_tags = ['attack/' + '_'.join(p) for p in attack_properties]
write_to_tensorboard(self._writer, attack_property_tags, attack_values,
global_step)
if self._writers is not None:
write_results_to_tensorboard(results, self._writers, global_step,
self._tensorboard_merge_classifiers)
def run_attack_on_tf_estimator_model(
@ -184,4 +197,3 @@ def run_attack_helper(
slicing_spec=slicing_spec,
attack_types=attack_types)
return results

View file

@ -27,30 +27,27 @@ from tensorflow_privacy.privacy.membership_inference_attack.data_structures impo
from tensorflow_privacy.privacy.membership_inference_attack.tf_estimator_evaluation import MembershipInferenceTrainingHook
from tensorflow_privacy.privacy.membership_inference_attack.tf_estimator_evaluation import run_attack_on_tf_estimator_model
GradientDescentOptimizer = tf.train.GradientDescentOptimizer
FLAGS = flags.FLAGS
flags.DEFINE_float('learning_rate', .15, 'Learning rate for training')
flags.DEFINE_integer('batch_size', 256, 'Batch size')
flags.DEFINE_integer('epochs', 10, 'Number of epochs')
flags.DEFINE_float('learning_rate', 0.02, 'Learning rate for training')
flags.DEFINE_integer('batch_size', 250, 'Batch size')
flags.DEFINE_integer('epochs', 100, 'Number of epochs')
flags.DEFINE_string('model_dir', None, 'Model directory.')
flags.DEFINE_bool('tensorboard_merge_classifiers', False, 'If true, plot '
'different classifiers with the same slicing_spec and metric '
'in the same figure.')
def cnn_model_fn(features, labels, mode):
"""Model function for a CNN."""
def small_cnn_fn(features, labels, mode):
"""Setup a small CNN for image classification."""
input_layer = tf.reshape(features['x'], [-1, 32, 32, 3])
for _ in range(3):
y = tf.keras.layers.Conv2D(32, (3, 3), activation='relu')(input_layer)
y = tf.keras.layers.MaxPool2D()(y)
# Define CNN architecture using tf.keras.layers.
input_layer = tf.reshape(features['x'], [-1, 28, 28, 1])
y = tf.keras.layers.Conv2D(
16, 8, strides=2, padding='same', activation='relu').apply(input_layer)
y = tf.keras.layers.MaxPool2D(2, 1).apply(y)
y = tf.keras.layers.Conv2D(
32, 4, strides=2, padding='valid', activation='relu').apply(y)
y = tf.keras.layers.MaxPool2D(2, 1).apply(y)
y = tf.keras.layers.Flatten().apply(y)
y = tf.keras.layers.Dense(32, activation='relu').apply(y)
logits = tf.keras.layers.Dense(10).apply(y)
y = tf.keras.layers.Flatten()(y)
y = tf.keras.layers.Dense(64, activation='relu')(y)
logits = tf.keras.layers.Dense(10)(y)
if mode != tf.estimator.ModeKeys.PREDICT:
vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
@ -59,7 +56,8 @@ def cnn_model_fn(features, labels, mode):
# Configure the training op (for TRAIN mode).
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = GradientDescentOptimizer(learning_rate=FLAGS.learning_rate)
optimizer = tf.train.MomentumOptimizer(learning_rate=FLAGS.learning_rate,
momentum=0.9)
global_step = tf.train.get_global_step()
train_op = optimizer.minimize(loss=scalar_loss, global_step=global_step)
return tf.estimator.EstimatorSpec(
@ -81,19 +79,17 @@ def cnn_model_fn(features, labels, mode):
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
def load_mnist():
"""Loads MNIST and preprocesses to combine training and validation data."""
(train_data,
train_labels), (test_data,
test_labels) = tf.keras.datasets.mnist.load_data()
def load_cifar10():
"""Loads CIFAR10 data."""
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
train_data = np.array(train_data, dtype=np.float32) / 255
test_data = np.array(test_data, dtype=np.float32) / 255
x_train = np.array(x_train, dtype=np.float32) / 255
x_test = np.array(x_test, dtype=np.float32) / 255
train_labels = np.array(train_labels, dtype=np.int32)
test_labels = np.array(test_labels, dtype=np.int32)
y_train = np.array(y_train, dtype=np.int32).squeeze()
y_test = np.array(y_test, dtype=np.int32).squeeze()
return train_data, train_labels, test_data, test_labels
return x_train, y_train, x_test, y_test
def main(unused_argv):
@ -103,39 +99,38 @@ def main(unused_argv):
logging.get_absl_handler().use_absl_log_file()
# Load training and test data.
train_data, train_labels, test_data, test_labels = load_mnist()
x_train, y_train, x_test, y_test = load_cifar10()
# Instantiate the tf.Estimator.
mnist_classifier = tf.estimator.Estimator(
model_fn=cnn_model_fn, model_dir=FLAGS.model_dir)
model_fn=small_cnn_fn, model_dir=FLAGS.model_dir)
# A function to construct input_fn given (data, label), to be used by the
# membership inference training hook.
def input_fn_constructor(x, y):
return tf.estimator.inputs.numpy_input_fn(x={'x': x}, y=y, shuffle=False)
with tf.Graph().as_default():
# Get a summary writer for the hook to write to tensorboard.
# Can set summary_writer to None if not needed.
if FLAGS.model_dir:
summary_writer = tf.summary.FileWriter(FLAGS.model_dir)
else:
summary_writer = None
# Get hook for membership inference attack.
mia_hook = MembershipInferenceTrainingHook(
mnist_classifier, (train_data, train_labels), (test_data, test_labels),
mnist_classifier,
(x_train, y_train),
(x_test, y_test),
input_fn_constructor,
attack_types=[AttackType.THRESHOLD_ATTACK],
writer=summary_writer)
slicing_spec=SlicingSpec(entire_dataset=True, by_class=True),
attack_types=[AttackType.THRESHOLD_ATTACK,
AttackType.K_NEAREST_NEIGHBORS],
tensorboard_dir=FLAGS.model_dir,
tensorboard_merge_classifiers=FLAGS.tensorboard_merge_classifiers)
# Create tf.Estimator input functions for the training and test data.
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={'x': train_data},
y=train_labels,
x={'x': x_train},
y=y_train,
batch_size=FLAGS.batch_size,
num_epochs=FLAGS.epochs,
shuffle=True)
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x={'x': test_data}, y=test_labels, num_epochs=1, shuffle=False)
x={'x': x_test}, y=y_test, num_epochs=1, shuffle=False)
# Training loop.
steps_per_epoch = 60000 // FLAGS.batch_size
@ -151,18 +146,15 @@ def main(unused_argv):
print('End of training attack')
attack_results = run_attack_on_tf_estimator_model(
mnist_classifier, (train_data, train_labels), (test_data, test_labels),
mnist_classifier, (x_train, y_train), (x_test, y_test),
input_fn_constructor,
slicing_spec=SlicingSpec(entire_dataset=True, by_class=True),
attack_types=[
AttackType.THRESHOLD_ATTACK, AttackType.K_NEAREST_NEIGHBORS
])
attack_properties, attack_values = get_flattened_attack_metrics(
attack_types=[AttackType.THRESHOLD_ATTACK, AttackType.K_NEAREST_NEIGHBORS]
)
att_types, att_slices, att_metrics, att_values = get_flattened_attack_metrics(
attack_results)
print('\n'.join([
' %s: %.4f' % (', '.join(p), r)
for p, r in zip(attack_properties, attack_values)
]))
print('\n'.join([' %s: %.4f' % (', '.join([s, t, m]), v) for t, s, m, v in
zip(att_types, att_slices, att_metrics, att_values)]))
if __name__ == '__main__':

View file

@ -88,9 +88,12 @@ class UtilsTest(absltest.TestCase):
self.test_labels,
attack_types=[AttackType.THRESHOLD_ATTACK])
self.assertIsInstance(results, AttackResults)
attack_properties, attack_values = get_flattened_attack_metrics(results)
self.assertLen(attack_properties, 2)
self.assertLen(attack_values, 2)
att_types, att_slices, att_metrics, att_values = get_flattened_attack_metrics(
results)
self.assertLen(att_types, 2)
self.assertLen(att_slices, 2)
self.assertLen(att_metrics, 2)
self.assertLen(att_values, 2)
def test_run_attack_on_tf_estimator_model(self):
"""Test the attack on the final models."""
@ -104,9 +107,12 @@ class UtilsTest(absltest.TestCase):
input_fn_constructor,
attack_types=[AttackType.THRESHOLD_ATTACK])
self.assertIsInstance(results, AttackResults)
attack_properties, attack_values = get_flattened_attack_metrics(results)
self.assertLen(attack_properties, 2)
self.assertLen(attack_values, 2)
att_types, att_slices, att_metrics, att_values = get_flattened_attack_metrics(
results)
self.assertLen(att_types, 2)
self.assertLen(att_slices, 2)
self.assertLen(att_metrics, 2)
self.assertLen(att_values, 2)
if __name__ == '__main__':

View file

@ -20,7 +20,7 @@ from typing import Text, Dict, Union, List, Any, Tuple
import numpy as np
import scipy.special
from sklearn import metrics
import tensorflow.compat.v1 as tf
ArrayDict = Dict[Text, np.ndarray]
Dataset = Tuple[Tuple[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray]]
@ -229,10 +229,12 @@ def log_loss(labels: np.ndarray, pred: np.ndarray, small_value=1e-8):
"""Compute the cross entropy loss.
Args:
labels: numpy array, labels[i] is the true label (scalar) of the i-th sample
pred: numpy array, pred[i] is the probability vector of the i-th sample
small_value: np.log can become -inf if the probability is too close to 0, so
the probability is clipped below by small_value.
labels: numpy array of shape (num_samples,) labels[i] is the true label
(scalar) of the i-th sample
pred: numpy array of shape(num_samples, num_classes) where pred[i] is the
probability vector of the i-th sample
small_value: a scalar. np.log can become -inf if the probability is too
close to 0, so the probability is clipped below by small_value.
Returns:
the cross-entropy loss of each sample
@ -243,26 +245,3 @@ def log_loss(labels: np.ndarray, pred: np.ndarray, small_value=1e-8):
def log_loss_from_logits(labels: np.ndarray, logits: np.ndarray):
"""Compute the cross entropy loss from logits."""
return log_loss(labels, scipy.special.softmax(logits, axis=-1))
# ------------------------------------------------------------------------------
# Tensorboard
# ------------------------------------------------------------------------------
def write_to_tensorboard(writer, tags, values, step):
"""Write metrics to tensorboard.
Args:
writer: tensorboard writer
tags: a list of tags of metrics
values: a list of values of metrics
step: step for the summary
"""
if writer is None:
return
summary = tf.Summary()
for tag, val in zip(tags, values):
summary.value.add(tag=tag, simple_value=val)
writer.add_summary(summary, step)
writer.flush()

View file

@ -0,0 +1,79 @@
# Copyright 2020, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Utility functions for writing attack results to tensorboard."""
from typing import List
from typing import Union
import tensorflow.compat.v1 as tf
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackResults
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import get_flattened_attack_metrics
def write_to_tensorboard(writers, tags, values, step):
"""Write metrics to tensorboard.
Args:
writers: a list of tensorboard writers or one writer to be used for metrics.
If it's a list, it should be of the same length as tags
tags: a list of tags of metrics
values: a list of values of metrics with the same length as tags
step: step for the tensorboard summary
"""
if writers is None or not writers:
raise ValueError('write_to_tensorboard does not get any writer.')
if not isinstance(writers, list):
writers = [writers] * len(tags)
assert len(writers) == len(tags) == len(values)
for writer, tag, val in zip(writers, tags, values):
summary = tf.Summary()
summary.value.add(tag=tag, simple_value=val)
writer.add_summary(summary, step)
for writer in set(writers):
writer.flush()
def write_results_to_tensorboard(
attack_results: AttackResults,
writers: Union[tf.summary.FileWriter, List[tf.summary.FileWriter]],
step: int,
merge_classifiers: bool):
"""Write attack results to tensorboard.
Args:
attack_results: results from attack
writers: a list of tensorboard writers or one writer to be used for metrics
step: step for the tensorboard summary
merge_classifiers: if true, plot different classifiers with the same
slicing_spec and metric in the same figure
"""
if writers is None or not writers:
raise ValueError('write_results_to_tensorboard does not get any writer.')
att_types, att_slices, att_metrics, att_values = get_flattened_attack_metrics(
attack_results)
if merge_classifiers:
att_tags = ['attack/' + '_'.join([s, m]) for s, m in
zip(att_slices, att_metrics)]
write_to_tensorboard([writers[t] for t in att_types],
att_tags, att_values, step)
else:
att_tags = ['attack/' + '_'.join([s, t, m]) for t, s, m in
zip(att_types, att_slices, att_metrics)]
write_to_tensorboard(writers, att_tags, att_values, step)