forked from 626_privacy/tensorflow_privacy
Minor fixes for Python 2/3 compatibility.
PiperOrigin-RevId: 230022543
This commit is contained in:
parent
0b56f7c016
commit
7e2d796bde
3 changed files with 4 additions and 18 deletions
|
@ -45,11 +45,7 @@ import sys
|
|||
|
||||
import numpy as np
|
||||
from scipy import special
|
||||
|
||||
try:
|
||||
long
|
||||
except NameError:
|
||||
long = int
|
||||
import six
|
||||
|
||||
########################
|
||||
# LOG-SPACE ARITHMETIC #
|
||||
|
@ -91,7 +87,7 @@ def _log_print(logx):
|
|||
|
||||
def _compute_log_a_int(q, sigma, alpha):
|
||||
"""Compute log(A_alpha) for integer alpha. 0 < q < 1."""
|
||||
assert isinstance(alpha, (int, long))
|
||||
assert isinstance(alpha, six.integer_types)
|
||||
|
||||
# Initialize with 0 in the log space.
|
||||
log_a = -np.inf
|
||||
|
|
|
@ -24,11 +24,6 @@ import tensorflow as tf
|
|||
|
||||
from privacy.optimizers import gaussian_query
|
||||
|
||||
try:
|
||||
xrange
|
||||
except NameError:
|
||||
xrange = range
|
||||
|
||||
|
||||
def _run_query(query, records):
|
||||
"""Executes query on the given set of records as a single sample.
|
||||
|
@ -114,7 +109,7 @@ class GaussianQueryTest(tf.test.TestCase, parameterized.TestCase):
|
|||
query_result = _run_query(query, [record1, record2])
|
||||
|
||||
noised_averages = []
|
||||
for _ in xrange(1000):
|
||||
for _ in range(1000):
|
||||
noised_averages.append(sess.run(query_result))
|
||||
|
||||
result_stddev = np.std(noised_averages)
|
||||
|
|
|
@ -30,11 +30,6 @@ nest = tf.contrib.framework.nest
|
|||
|
||||
_basic_query = gaussian_query.GaussianSumQuery(1.0, 0.0)
|
||||
|
||||
try:
|
||||
xrange
|
||||
except NameError:
|
||||
xrange = range
|
||||
|
||||
|
||||
def _run_query(query, records):
|
||||
"""Executes query on the given set of records as a single sample.
|
||||
|
@ -145,7 +140,7 @@ class NestedQueryTest(tf.test.TestCase, parameterized.TestCase):
|
|||
query_result = _run_query(query, [record1, record2])
|
||||
|
||||
noised_averages = []
|
||||
for _ in xrange(1000):
|
||||
for _ in range(1000):
|
||||
noised_averages.append(nest.flatten(sess.run(query_result)))
|
||||
|
||||
result_stddev = np.std(noised_averages, 0)
|
||||
|
|
Loading…
Reference in a new issue