forked from 626_privacy/tensorflow_privacy
Migrate accounting in tutorials to Google DP.
PiperOrigin-RevId: 444993855
This commit is contained in:
parent
d47cc695cd
commit
81d5880702
7 changed files with 77 additions and 48 deletions
|
@ -13,7 +13,10 @@ py_library(
|
|||
name = "compute_dp_sgd_privacy_lib",
|
||||
srcs = ["compute_dp_sgd_privacy_lib.py"],
|
||||
srcs_version = "PY3",
|
||||
deps = [":rdp_accountant"],
|
||||
deps = [
|
||||
"@com_google_differential_py//python/dp_accounting:dp_event",
|
||||
"@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant",
|
||||
],
|
||||
)
|
||||
|
||||
py_binary(
|
||||
|
|
|
@ -17,20 +17,22 @@
|
|||
import math
|
||||
|
||||
from absl import app
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp # pylint: disable=g-import-not-at-top
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
|
||||
|
||||
from com_google_differential_py.python.dp_accounting import dp_event
|
||||
from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant
|
||||
|
||||
|
||||
def apply_dp_sgd_analysis(q, sigma, steps, orders, delta):
|
||||
"""Compute and print results of DP-SGD analysis."""
|
||||
|
||||
# compute_rdp requires that sigma be the ratio of the standard deviation of
|
||||
# the Gaussian noise to the l2-sensitivity of the function to which it is
|
||||
# added. Hence, sigma here corresponds to the `noise_multiplier` parameter
|
||||
# in the DP-SGD implementation found in privacy.optimizers.dp_optimizer
|
||||
rdp = compute_rdp(q, sigma, steps, orders)
|
||||
accountant = rdp_privacy_accountant.RdpAccountant(orders)
|
||||
|
||||
eps, _, opt_order = get_privacy_spent(orders, rdp, target_delta=delta)
|
||||
event = dp_event.SelfComposedDpEvent(
|
||||
dp_event.PoissonSampledDpEvent(q, dp_event.GaussianDpEvent(sigma)), steps)
|
||||
|
||||
accountant.compose(event)
|
||||
|
||||
eps, opt_order = accountant.get_epsilon_and_optimal_order(delta)
|
||||
|
||||
print(
|
||||
'DP-SGD with sampling rate = {:.3g}% and noise_multiplier = {} iterated'
|
||||
|
|
|
@ -27,8 +27,9 @@ py_binary(
|
|||
python_version = "PY3",
|
||||
srcs_version = "PY3",
|
||||
deps = [
|
||||
"//tensorflow_privacy/privacy/analysis:rdp_accountant",
|
||||
"//tensorflow_privacy/privacy/optimizers:dp_optimizer",
|
||||
"@com_google_differential_py//python/dp_accounting:dp_event",
|
||||
"@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant",
|
||||
],
|
||||
)
|
||||
|
||||
|
@ -38,8 +39,9 @@ py_binary(
|
|||
python_version = "PY3",
|
||||
srcs_version = "PY3",
|
||||
deps = [
|
||||
"//tensorflow_privacy/privacy/analysis:rdp_accountant",
|
||||
"//tensorflow_privacy/privacy/optimizers:dp_optimizer_keras",
|
||||
"@com_google_differential_py//python/dp_accounting:dp_event",
|
||||
"@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant",
|
||||
],
|
||||
)
|
||||
|
||||
|
@ -49,8 +51,9 @@ py_binary(
|
|||
python_version = "PY3",
|
||||
srcs_version = "PY3",
|
||||
deps = [
|
||||
"//tensorflow_privacy/privacy/analysis:rdp_accountant",
|
||||
"//tensorflow_privacy/privacy/keras_models:dp_keras_model",
|
||||
"@com_google_differential_py//python/dp_accounting:dp_event",
|
||||
"@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant",
|
||||
],
|
||||
)
|
||||
|
||||
|
@ -60,10 +63,11 @@ py_binary(
|
|||
python_version = "PY3",
|
||||
srcs_version = "PY3",
|
||||
deps = [
|
||||
"//tensorflow_privacy/privacy/analysis:rdp_accountant",
|
||||
"//tensorflow_privacy/privacy/optimizers:dp_optimizer_vectorized",
|
||||
"//third_party/py/tensorflow:tensorflow_compat_v1_estimator",
|
||||
"//third_party/py/tensorflow:tensorflow_estimator",
|
||||
"@com_google_differential_py//python/dp_accounting:dp_event",
|
||||
"@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant",
|
||||
],
|
||||
)
|
||||
|
||||
|
|
|
@ -17,11 +17,12 @@ from absl import app
|
|||
from absl import flags
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
|
||||
from tensorflow_privacy.privacy.optimizers.dp_optimizer import DPGradientDescentGaussianOptimizer
|
||||
|
||||
from com_google_differential_py.python.dp_accounting import dp_event
|
||||
from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant
|
||||
|
||||
|
||||
GradientDescentOptimizer = tf.compat.v1.train.GradientDescentOptimizer
|
||||
tf.compat.v1.enable_eager_execution()
|
||||
|
||||
|
@ -46,14 +47,18 @@ def compute_epsilon(steps):
|
|||
if FLAGS.noise_multiplier == 0.0:
|
||||
return float('inf')
|
||||
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
|
||||
accountant = rdp_privacy_accountant.RdpAccountant(orders)
|
||||
|
||||
sampling_probability = FLAGS.batch_size / 60000
|
||||
rdp = compute_rdp(
|
||||
q=sampling_probability,
|
||||
noise_multiplier=FLAGS.noise_multiplier,
|
||||
steps=steps,
|
||||
orders=orders)
|
||||
event = dp_event.SelfComposedDpEvent(
|
||||
dp_event.PoissonSampledDpEvent(
|
||||
sampling_probability,
|
||||
dp_event.GaussianDpEvent(FLAGS.noise_multiplier)), steps)
|
||||
|
||||
accountant.compose(event)
|
||||
|
||||
# Delta is set to 1e-5 because MNIST has 60000 training points.
|
||||
return get_privacy_spent(orders, rdp, target_delta=1e-5)[0]
|
||||
return accountant.get_epsilon(target_delta=1e-5)
|
||||
|
||||
|
||||
def main(_):
|
||||
|
|
|
@ -20,10 +20,11 @@ from absl import logging
|
|||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
|
||||
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import DPKerasSGDOptimizer
|
||||
|
||||
from com_google_differential_py.python.dp_accounting import dp_event
|
||||
from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant
|
||||
|
||||
flags.DEFINE_boolean(
|
||||
'dpsgd', True, 'If True, train with DP-SGD. If False, '
|
||||
'train with vanilla SGD.')
|
||||
|
@ -46,14 +47,18 @@ def compute_epsilon(steps):
|
|||
if FLAGS.noise_multiplier == 0.0:
|
||||
return float('inf')
|
||||
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
|
||||
accountant = rdp_privacy_accountant.RdpAccountant(orders)
|
||||
|
||||
sampling_probability = FLAGS.batch_size / 60000
|
||||
rdp = compute_rdp(
|
||||
q=sampling_probability,
|
||||
noise_multiplier=FLAGS.noise_multiplier,
|
||||
steps=steps,
|
||||
orders=orders)
|
||||
event = dp_event.SelfComposedDpEvent(
|
||||
dp_event.PoissonSampledDpEvent(
|
||||
sampling_probability,
|
||||
dp_event.GaussianDpEvent(FLAGS.noise_multiplier)), steps)
|
||||
|
||||
accountant.compose(event)
|
||||
|
||||
# Delta is set to 1e-5 because MNIST has 60000 training points.
|
||||
return get_privacy_spent(orders, rdp, target_delta=1e-5)[0]
|
||||
return accountant.get_epsilon(target_delta=1e-5)
|
||||
|
||||
|
||||
def load_mnist():
|
||||
|
|
|
@ -19,10 +19,11 @@ from absl import logging
|
|||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
|
||||
from tensorflow_privacy.privacy.keras_models.dp_keras_model import DPSequential
|
||||
|
||||
from com_google_differential_py.python.dp_accounting import dp_event
|
||||
from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant
|
||||
|
||||
flags.DEFINE_boolean(
|
||||
'dpsgd', True, 'If True, train with DP-SGD. If False, '
|
||||
'train with vanilla SGD.')
|
||||
|
@ -45,14 +46,18 @@ def compute_epsilon(steps):
|
|||
if FLAGS.noise_multiplier == 0.0:
|
||||
return float('inf')
|
||||
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
|
||||
accountant = rdp_privacy_accountant.RdpAccountant(orders)
|
||||
|
||||
sampling_probability = FLAGS.batch_size / 60000
|
||||
rdp = compute_rdp(
|
||||
q=sampling_probability,
|
||||
noise_multiplier=FLAGS.noise_multiplier,
|
||||
steps=steps,
|
||||
orders=orders)
|
||||
event = dp_event.SelfComposedDpEvent(
|
||||
dp_event.PoissonSampledDpEvent(
|
||||
sampling_probability,
|
||||
dp_event.GaussianDpEvent(FLAGS.noise_multiplier)), steps)
|
||||
|
||||
accountant.compose(event)
|
||||
|
||||
# Delta is set to 1e-5 because MNIST has 60000 training points.
|
||||
return get_privacy_spent(orders, rdp, target_delta=1e-5)[0]
|
||||
return accountant.get_epsilon(target_delta=1e-5)
|
||||
|
||||
|
||||
def load_mnist():
|
||||
|
|
|
@ -20,10 +20,11 @@ import numpy as np
|
|||
import tensorflow as tf
|
||||
from tensorflow import estimator as tf_estimator
|
||||
from tensorflow.compat.v1 import estimator as tf_compat_v1_estimator
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
|
||||
from tensorflow_privacy.privacy.optimizers import dp_optimizer_vectorized
|
||||
|
||||
from com_google_differential_py.python.dp_accounting import dp_event
|
||||
from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant
|
||||
|
||||
flags.DEFINE_boolean(
|
||||
'dpsgd', True, 'If True, train with DP-SGD. If False, '
|
||||
'train with vanilla SGD.')
|
||||
|
@ -50,14 +51,18 @@ def compute_epsilon(steps):
|
|||
if FLAGS.noise_multiplier == 0.0:
|
||||
return float('inf')
|
||||
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
|
||||
sampling_probability = FLAGS.batch_size / NUM_TRAIN_EXAMPLES
|
||||
rdp = compute_rdp(
|
||||
q=sampling_probability,
|
||||
noise_multiplier=FLAGS.noise_multiplier,
|
||||
steps=steps,
|
||||
orders=orders)
|
||||
# Delta is set to approximate 1 / (number of training points).
|
||||
return get_privacy_spent(orders, rdp, target_delta=1e-5)[0]
|
||||
accountant = rdp_privacy_accountant.RdpAccountant(orders)
|
||||
|
||||
sampling_probability = FLAGS.batch_size / 60000
|
||||
event = dp_event.SelfComposedDpEvent(
|
||||
dp_event.PoissonSampledDpEvent(
|
||||
sampling_probability,
|
||||
dp_event.GaussianDpEvent(FLAGS.noise_multiplier)), steps)
|
||||
|
||||
accountant.compose(event)
|
||||
|
||||
# Delta is set to 1e-5 because MNIST has 60000 training points.
|
||||
return accountant.get_epsilon(target_delta=1e-5)
|
||||
|
||||
|
||||
def cnn_model_fn(features, labels, mode):
|
||||
|
|
Loading…
Reference in a new issue