Migrate accounting in tutorials to Google DP.

PiperOrigin-RevId: 444993855
This commit is contained in:
Galen Andrew 2022-04-27 16:09:01 -07:00 committed by A. Unique TensorFlower
parent d47cc695cd
commit 81d5880702
7 changed files with 77 additions and 48 deletions

View file

@ -13,7 +13,10 @@ py_library(
name = "compute_dp_sgd_privacy_lib", name = "compute_dp_sgd_privacy_lib",
srcs = ["compute_dp_sgd_privacy_lib.py"], srcs = ["compute_dp_sgd_privacy_lib.py"],
srcs_version = "PY3", srcs_version = "PY3",
deps = [":rdp_accountant"], deps = [
"@com_google_differential_py//python/dp_accounting:dp_event",
"@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant",
],
) )
py_binary( py_binary(

View file

@ -17,20 +17,22 @@
import math import math
from absl import app from absl import app
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp # pylint: disable=g-import-not-at-top
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent from com_google_differential_py.python.dp_accounting import dp_event
from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant
def apply_dp_sgd_analysis(q, sigma, steps, orders, delta): def apply_dp_sgd_analysis(q, sigma, steps, orders, delta):
"""Compute and print results of DP-SGD analysis.""" """Compute and print results of DP-SGD analysis."""
# compute_rdp requires that sigma be the ratio of the standard deviation of accountant = rdp_privacy_accountant.RdpAccountant(orders)
# the Gaussian noise to the l2-sensitivity of the function to which it is
# added. Hence, sigma here corresponds to the `noise_multiplier` parameter
# in the DP-SGD implementation found in privacy.optimizers.dp_optimizer
rdp = compute_rdp(q, sigma, steps, orders)
eps, _, opt_order = get_privacy_spent(orders, rdp, target_delta=delta) event = dp_event.SelfComposedDpEvent(
dp_event.PoissonSampledDpEvent(q, dp_event.GaussianDpEvent(sigma)), steps)
accountant.compose(event)
eps, opt_order = accountant.get_epsilon_and_optimal_order(delta)
print( print(
'DP-SGD with sampling rate = {:.3g}% and noise_multiplier = {} iterated' 'DP-SGD with sampling rate = {:.3g}% and noise_multiplier = {} iterated'

View file

@ -27,8 +27,9 @@ py_binary(
python_version = "PY3", python_version = "PY3",
srcs_version = "PY3", srcs_version = "PY3",
deps = [ deps = [
"//tensorflow_privacy/privacy/analysis:rdp_accountant",
"//tensorflow_privacy/privacy/optimizers:dp_optimizer", "//tensorflow_privacy/privacy/optimizers:dp_optimizer",
"@com_google_differential_py//python/dp_accounting:dp_event",
"@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant",
], ],
) )
@ -38,8 +39,9 @@ py_binary(
python_version = "PY3", python_version = "PY3",
srcs_version = "PY3", srcs_version = "PY3",
deps = [ deps = [
"//tensorflow_privacy/privacy/analysis:rdp_accountant",
"//tensorflow_privacy/privacy/optimizers:dp_optimizer_keras", "//tensorflow_privacy/privacy/optimizers:dp_optimizer_keras",
"@com_google_differential_py//python/dp_accounting:dp_event",
"@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant",
], ],
) )
@ -49,8 +51,9 @@ py_binary(
python_version = "PY3", python_version = "PY3",
srcs_version = "PY3", srcs_version = "PY3",
deps = [ deps = [
"//tensorflow_privacy/privacy/analysis:rdp_accountant",
"//tensorflow_privacy/privacy/keras_models:dp_keras_model", "//tensorflow_privacy/privacy/keras_models:dp_keras_model",
"@com_google_differential_py//python/dp_accounting:dp_event",
"@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant",
], ],
) )
@ -60,10 +63,11 @@ py_binary(
python_version = "PY3", python_version = "PY3",
srcs_version = "PY3", srcs_version = "PY3",
deps = [ deps = [
"//tensorflow_privacy/privacy/analysis:rdp_accountant",
"//tensorflow_privacy/privacy/optimizers:dp_optimizer_vectorized", "//tensorflow_privacy/privacy/optimizers:dp_optimizer_vectorized",
"//third_party/py/tensorflow:tensorflow_compat_v1_estimator", "//third_party/py/tensorflow:tensorflow_compat_v1_estimator",
"//third_party/py/tensorflow:tensorflow_estimator", "//third_party/py/tensorflow:tensorflow_estimator",
"@com_google_differential_py//python/dp_accounting:dp_event",
"@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant",
], ],
) )

View file

@ -17,11 +17,12 @@ from absl import app
from absl import flags from absl import flags
import numpy as np import numpy as np
import tensorflow as tf import tensorflow as tf
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
from tensorflow_privacy.privacy.optimizers.dp_optimizer import DPGradientDescentGaussianOptimizer from tensorflow_privacy.privacy.optimizers.dp_optimizer import DPGradientDescentGaussianOptimizer
from com_google_differential_py.python.dp_accounting import dp_event
from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant
GradientDescentOptimizer = tf.compat.v1.train.GradientDescentOptimizer GradientDescentOptimizer = tf.compat.v1.train.GradientDescentOptimizer
tf.compat.v1.enable_eager_execution() tf.compat.v1.enable_eager_execution()
@ -46,14 +47,18 @@ def compute_epsilon(steps):
if FLAGS.noise_multiplier == 0.0: if FLAGS.noise_multiplier == 0.0:
return float('inf') return float('inf')
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64)) orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
accountant = rdp_privacy_accountant.RdpAccountant(orders)
sampling_probability = FLAGS.batch_size / 60000 sampling_probability = FLAGS.batch_size / 60000
rdp = compute_rdp( event = dp_event.SelfComposedDpEvent(
q=sampling_probability, dp_event.PoissonSampledDpEvent(
noise_multiplier=FLAGS.noise_multiplier, sampling_probability,
steps=steps, dp_event.GaussianDpEvent(FLAGS.noise_multiplier)), steps)
orders=orders)
accountant.compose(event)
# Delta is set to 1e-5 because MNIST has 60000 training points. # Delta is set to 1e-5 because MNIST has 60000 training points.
return get_privacy_spent(orders, rdp, target_delta=1e-5)[0] return accountant.get_epsilon(target_delta=1e-5)
def main(_): def main(_):

View file

@ -20,10 +20,11 @@ from absl import logging
import numpy as np import numpy as np
import tensorflow as tf import tensorflow as tf
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import DPKerasSGDOptimizer from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import DPKerasSGDOptimizer
from com_google_differential_py.python.dp_accounting import dp_event
from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant
flags.DEFINE_boolean( flags.DEFINE_boolean(
'dpsgd', True, 'If True, train with DP-SGD. If False, ' 'dpsgd', True, 'If True, train with DP-SGD. If False, '
'train with vanilla SGD.') 'train with vanilla SGD.')
@ -46,14 +47,18 @@ def compute_epsilon(steps):
if FLAGS.noise_multiplier == 0.0: if FLAGS.noise_multiplier == 0.0:
return float('inf') return float('inf')
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64)) orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
accountant = rdp_privacy_accountant.RdpAccountant(orders)
sampling_probability = FLAGS.batch_size / 60000 sampling_probability = FLAGS.batch_size / 60000
rdp = compute_rdp( event = dp_event.SelfComposedDpEvent(
q=sampling_probability, dp_event.PoissonSampledDpEvent(
noise_multiplier=FLAGS.noise_multiplier, sampling_probability,
steps=steps, dp_event.GaussianDpEvent(FLAGS.noise_multiplier)), steps)
orders=orders)
accountant.compose(event)
# Delta is set to 1e-5 because MNIST has 60000 training points. # Delta is set to 1e-5 because MNIST has 60000 training points.
return get_privacy_spent(orders, rdp, target_delta=1e-5)[0] return accountant.get_epsilon(target_delta=1e-5)
def load_mnist(): def load_mnist():

View file

@ -19,10 +19,11 @@ from absl import logging
import numpy as np import numpy as np
import tensorflow as tf import tensorflow as tf
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
from tensorflow_privacy.privacy.keras_models.dp_keras_model import DPSequential from tensorflow_privacy.privacy.keras_models.dp_keras_model import DPSequential
from com_google_differential_py.python.dp_accounting import dp_event
from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant
flags.DEFINE_boolean( flags.DEFINE_boolean(
'dpsgd', True, 'If True, train with DP-SGD. If False, ' 'dpsgd', True, 'If True, train with DP-SGD. If False, '
'train with vanilla SGD.') 'train with vanilla SGD.')
@ -45,14 +46,18 @@ def compute_epsilon(steps):
if FLAGS.noise_multiplier == 0.0: if FLAGS.noise_multiplier == 0.0:
return float('inf') return float('inf')
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64)) orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
accountant = rdp_privacy_accountant.RdpAccountant(orders)
sampling_probability = FLAGS.batch_size / 60000 sampling_probability = FLAGS.batch_size / 60000
rdp = compute_rdp( event = dp_event.SelfComposedDpEvent(
q=sampling_probability, dp_event.PoissonSampledDpEvent(
noise_multiplier=FLAGS.noise_multiplier, sampling_probability,
steps=steps, dp_event.GaussianDpEvent(FLAGS.noise_multiplier)), steps)
orders=orders)
accountant.compose(event)
# Delta is set to 1e-5 because MNIST has 60000 training points. # Delta is set to 1e-5 because MNIST has 60000 training points.
return get_privacy_spent(orders, rdp, target_delta=1e-5)[0] return accountant.get_epsilon(target_delta=1e-5)
def load_mnist(): def load_mnist():

View file

@ -20,10 +20,11 @@ import numpy as np
import tensorflow as tf import tensorflow as tf
from tensorflow import estimator as tf_estimator from tensorflow import estimator as tf_estimator
from tensorflow.compat.v1 import estimator as tf_compat_v1_estimator from tensorflow.compat.v1 import estimator as tf_compat_v1_estimator
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
from tensorflow_privacy.privacy.optimizers import dp_optimizer_vectorized from tensorflow_privacy.privacy.optimizers import dp_optimizer_vectorized
from com_google_differential_py.python.dp_accounting import dp_event
from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant
flags.DEFINE_boolean( flags.DEFINE_boolean(
'dpsgd', True, 'If True, train with DP-SGD. If False, ' 'dpsgd', True, 'If True, train with DP-SGD. If False, '
'train with vanilla SGD.') 'train with vanilla SGD.')
@ -50,14 +51,18 @@ def compute_epsilon(steps):
if FLAGS.noise_multiplier == 0.0: if FLAGS.noise_multiplier == 0.0:
return float('inf') return float('inf')
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64)) orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
sampling_probability = FLAGS.batch_size / NUM_TRAIN_EXAMPLES accountant = rdp_privacy_accountant.RdpAccountant(orders)
rdp = compute_rdp(
q=sampling_probability, sampling_probability = FLAGS.batch_size / 60000
noise_multiplier=FLAGS.noise_multiplier, event = dp_event.SelfComposedDpEvent(
steps=steps, dp_event.PoissonSampledDpEvent(
orders=orders) sampling_probability,
# Delta is set to approximate 1 / (number of training points). dp_event.GaussianDpEvent(FLAGS.noise_multiplier)), steps)
return get_privacy_spent(orders, rdp, target_delta=1e-5)[0]
accountant.compose(event)
# Delta is set to 1e-5 because MNIST has 60000 training points.
return accountant.get_epsilon(target_delta=1e-5)
def cnn_model_fn(features, labels, mode): def cnn_model_fn(features, labels, mode):