Deprecates implementations of RDP accounting from tensorflow_privacy in favor of differential_privacy.

PiperOrigin-RevId: 443177278
This commit is contained in:
Galen Andrew 2022-04-20 13:25:14 -07:00 committed by A. Unique TensorFlower
parent ee35642b90
commit 868cf54470
3 changed files with 113 additions and 500 deletions

View file

@ -61,6 +61,11 @@ py_library(
srcs = ["rdp_accountant.py"],
srcs_version = "PY3",
visibility = ["//visibility:public"],
deps = [
"@com_google_differential_py//python/dp_accounting:dp_event",
"@com_google_differential_py//python/dp_accounting:privacy_accountant",
"@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant",
],
)
py_test(

View file

@ -12,7 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""RDP analysis of the Sampled Gaussian Mechanism.
"""(Deprecated) RDP analysis of the Sampled Gaussian Mechanism.
The functions in this package have been superseded by more general accounting
mechanisms in Google's `differential_privacy` package. These functions may at
some future date be removed.
Functionality for computing Renyi differential privacy (RDP) of an additive
Sampled Gaussian Mechanism (SGM). Its public interface consists of two methods:
@ -37,342 +41,50 @@ The example code would be:
eps, _, opt_order = rdp_accountant.get_privacy_spent(rdp, target_delta=delta)
"""
import math
import sys
import numpy as np
from scipy import special
########################
# LOG-SPACE ARITHMETIC #
########################
from com_google_differential_py.python.dp_accounting import dp_event
from com_google_differential_py.python.dp_accounting import privacy_accountant
from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant
def _log_add(logx, logy):
"""Add two numbers in the log space."""
a, b = min(logx, logy), max(logx, logy)
if a == -np.inf: # adding 0
return b
# Use exp(a) + exp(b) = (exp(a - b) + 1) * exp(b)
return math.log1p(math.exp(a - b)) + b # log1p(x) = log(x + 1)
def _log_sub(logx, logy):
"""Subtract two numbers in the log space. Answer must be non-negative."""
if logx < logy:
raise ValueError("The result of subtraction must be non-negative.")
if logy == -np.inf: # subtracting 0
return logx
if logx == logy:
return -np.inf # 0 is represented as -np.inf in the log space.
try:
# Use exp(x) - exp(y) = (exp(x - y) - 1) * exp(y).
return math.log(math.expm1(logx - logy)) + logy # expm1(x) = exp(x) - 1
except OverflowError:
return logx
def _log_sub_sign(logx, logy):
"""Returns log(exp(logx)-exp(logy)) and its sign."""
if logx > logy:
s = True
mag = logx + np.log(1 - np.exp(logy - logx))
elif logx < logy:
s = False
mag = logy + np.log(1 - np.exp(logx - logy))
else:
s = True
mag = -np.inf
return s, mag
def _log_print(logx):
"""Pretty print."""
if logx < math.log(sys.float_info.max):
return "{}".format(math.exp(logx))
else:
return "exp({})".format(logx)
def _log_comb(n, k):
return (special.gammaln(n + 1) - special.gammaln(k + 1) -
special.gammaln(n - k + 1))
def _compute_log_a_int(q, sigma, alpha):
"""Compute log(A_alpha) for integer alpha. 0 < q < 1."""
assert isinstance(alpha, int)
# Initialize with 0 in the log space.
log_a = -np.inf
for i in range(alpha + 1):
log_coef_i = (
_log_comb(alpha, i) + i * math.log(q) + (alpha - i) * math.log(1 - q))
s = log_coef_i + (i * i - i) / (2 * (sigma**2))
log_a = _log_add(log_a, s)
return float(log_a)
def _compute_log_a_frac(q, sigma, alpha):
"""Compute log(A_alpha) for fractional alpha. 0 < q < 1."""
# The two parts of A_alpha, integrals over (-inf,z0] and [z0, +inf), are
# initialized to 0 in the log space:
log_a0, log_a1 = -np.inf, -np.inf
i = 0
z0 = sigma**2 * math.log(1 / q - 1) + .5
while True: # do ... until loop
coef = special.binom(alpha, i)
log_coef = math.log(abs(coef))
j = alpha - i
log_t0 = log_coef + i * math.log(q) + j * math.log(1 - q)
log_t1 = log_coef + j * math.log(q) + i * math.log(1 - q)
log_e0 = math.log(.5) + _log_erfc((i - z0) / (math.sqrt(2) * sigma))
log_e1 = math.log(.5) + _log_erfc((z0 - j) / (math.sqrt(2) * sigma))
log_s0 = log_t0 + (i * i - i) / (2 * (sigma**2)) + log_e0
log_s1 = log_t1 + (j * j - j) / (2 * (sigma**2)) + log_e1
if coef > 0:
log_a0 = _log_add(log_a0, log_s0)
log_a1 = _log_add(log_a1, log_s1)
else:
log_a0 = _log_sub(log_a0, log_s0)
log_a1 = _log_sub(log_a1, log_s1)
i += 1
if max(log_s0, log_s1) < -30:
break
return _log_add(log_a0, log_a1)
def _compute_log_a(q, sigma, alpha):
"""Compute log(A_alpha) for any positive finite alpha."""
if float(alpha).is_integer():
return _compute_log_a_int(q, sigma, int(alpha))
else:
return _compute_log_a_frac(q, sigma, alpha)
def _log_erfc(x):
"""Compute log(erfc(x)) with high accuracy for large x."""
try:
return math.log(2) + special.log_ndtr(-x * 2**.5)
except NameError:
# If log_ndtr is not available, approximate as follows:
r = special.erfc(x)
if r == 0.0:
# Using the Laurent series at infinity for the tail of the erfc function:
# erfc(x) ~ exp(-x^2-.5/x^2+.625/x^4)/(x*pi^.5)
# To verify in Mathematica:
# Series[Log[Erfc[x]] + Log[x] + Log[Pi]/2 + x^2, {x, Infinity, 6}]
return (-math.log(math.pi) / 2 - math.log(x) - x**2 - .5 * x**-2 +
.625 * x**-4 - 37. / 24. * x**-6 + 353. / 64. * x**-8)
else:
return math.log(r)
def _compute_delta(orders, rdp, eps):
"""Compute delta given a list of RDP values and target epsilon.
def _compute_rdp_from_event(orders, event, count):
"""Computes RDP from a DpEvent using RdpAccountant.
Args:
orders: An array (or a scalar) of orders.
rdp: A list (or a scalar) of RDP guarantees.
eps: The target epsilon.
orders: An array (or a scalar) of RDP orders.
event: A DpEvent to compute the RDP of.
count: The number of self-compositions.
Returns:
Pair of (delta, optimal_order).
Raises:
ValueError: If input is malformed.
The RDP at all orders. Can be `np.inf`.
"""
orders_vec = np.atleast_1d(orders)
rdp_vec = np.atleast_1d(rdp)
if eps < 0:
raise ValueError("Value of privacy loss bound epsilon must be >=0.")
if len(orders_vec) != len(rdp_vec):
raise ValueError("Input lists must have the same length.")
# Basic bound (see https://arxiv.org/abs/1702.07476 Proposition 3 in v3):
# delta = min( np.exp((rdp_vec - eps) * (orders_vec - 1)) )
# Improved bound from https://arxiv.org/abs/2004.00010 Proposition 12 (in v4):
logdeltas = [] # work in log space to avoid overflows
for (a, r) in zip(orders_vec, rdp_vec):
if a < 1:
raise ValueError("Renyi divergence order must be >=1.")
if r < 0:
raise ValueError("Renyi divergence must be >=0.")
# For small alpha, we are better of with bound via KL divergence:
# delta <= sqrt(1-exp(-KL)).
# Take a min of the two bounds.
logdelta = 0.5 * math.log1p(-math.exp(-r))
if a > 1.01:
# This bound is not numerically stable as alpha->1.
# Thus we have a min value for alpha.
# The bound is also not useful for small alpha, so doesn't matter.
rdp_bound = (a - 1) * (r - eps + math.log1p(-1 / a)) - math.log(a)
logdelta = min(logdelta, rdp_bound)
logdeltas.append(logdelta)
idx_opt = np.argmin(logdeltas)
return min(math.exp(logdeltas[idx_opt]), 1.), orders_vec[idx_opt]
def _compute_eps(orders, rdp, delta):
"""Compute epsilon given a list of RDP values and target delta.
Args:
orders: An array (or a scalar) of orders.
rdp: A list (or a scalar) of RDP guarantees.
delta: The target delta.
Returns:
Pair of (eps, optimal_order).
Raises:
ValueError: If input is malformed.
"""
orders_vec = np.atleast_1d(orders)
rdp_vec = np.atleast_1d(rdp)
if delta <= 0:
raise ValueError("Privacy failure probability bound delta must be >0.")
if len(orders_vec) != len(rdp_vec):
raise ValueError("Input lists must have the same length.")
# Basic bound (see https://arxiv.org/abs/1702.07476 Proposition 3 in v3):
# eps = min( rdp_vec - math.log(delta) / (orders_vec - 1) )
# Improved bound from https://arxiv.org/abs/2004.00010 Proposition 12 (in v4).
# Also appears in https://arxiv.org/abs/2001.05990 Equation 20 (in v1).
eps_vec = []
for (a, r) in zip(orders_vec, rdp_vec):
if a < 1:
raise ValueError("Renyi divergence order must be >=1.")
if r < 0:
raise ValueError("Renyi divergence must be >=0.")
if delta**2 + math.expm1(-r) >= 0:
# In this case, we can simply bound via KL divergence:
# delta <= sqrt(1-exp(-KL)).
eps = 0 # No need to try further computation if we have eps = 0.
elif a > 1.01:
# This bound is not numerically stable as alpha->1.
# Thus we have a min value of alpha.
# The bound is also not useful for small alpha, so doesn't matter.
eps = r + math.log1p(-1 / a) - math.log(delta * a) / (a - 1)
if isinstance(event, dp_event.SampledWithoutReplacementDpEvent):
neighboring_relation = privacy_accountant.NeighboringRelation.REPLACE_ONE
elif isinstance(event, dp_event.SingleEpochTreeAggregationDpEvent):
neighboring_relation = privacy_accountant.NeighboringRelation.REPLACE_SPECIAL
else:
# In this case we can't do anything. E.g., asking for delta = 0.
eps = np.inf
eps_vec.append(eps)
neighboring_relation = privacy_accountant.NeighboringRelation.ADD_OR_REMOVE_ONE
idx_opt = np.argmin(eps_vec)
return max(0, eps_vec[idx_opt]), orders_vec[idx_opt]
accountant = rdp_privacy_accountant.RdpAccountant(orders_vec,
neighboring_relation)
accountant.compose(event, count)
rdp = accountant._rdp # pylint: disable=protected-access
def _stable_inplace_diff_in_log(vec, signs, n=-1):
"""Replaces the first n-1 dims of vec with the log of abs difference operator.
Args:
vec: numpy array of floats with size larger than 'n'
signs: Optional numpy array of bools with the same size as vec in case one
needs to compute partial differences vec and signs jointly describe a
vector of real numbers' sign and abs in log scale.
n: Optonal upper bound on number of differences to compute. If negative, all
differences are computed.
Returns:
The first n-1 dimension of vec and signs will store the log-abs and sign of
the difference.
Raises:
ValueError: If input is malformed.
"""
assert vec.shape == signs.shape
if n < 0:
n = np.max(vec.shape) - 1
if np.isscalar(orders):
return rdp[0]
else:
assert np.max(vec.shape) >= n + 1
for j in range(0, n, 1):
if signs[j] == signs[j + 1]: # When the signs are the same
# if the signs are both positive, then we can just use the standard one
signs[j], vec[j] = _log_sub_sign(vec[j + 1], vec[j])
# otherwise, we do that but toggle the sign
if not signs[j + 1]:
signs[j] = ~signs[j]
else: # When the signs are different.
vec[j] = _log_add(vec[j], vec[j + 1])
signs[j] = signs[j + 1]
def _get_forward_diffs(fun, n):
"""Computes up to nth order forward difference evaluated at 0.
See Theorem 27 of https://arxiv.org/pdf/1808.00087.pdf
Args:
fun: Function to compute forward differences of.
n: Number of differences to compute.
Returns:
Pair (deltas, signs_deltas) of the log deltas and their signs.
"""
func_vec = np.zeros(n + 3)
signs_func_vec = np.ones(n + 3, dtype=bool)
# ith coordinate of deltas stores log(abs(ith order discrete derivative))
deltas = np.zeros(n + 2)
signs_deltas = np.zeros(n + 2, dtype=bool)
for i in range(1, n + 3, 1):
func_vec[i] = fun(1.0 * (i - 1))
for i in range(0, n + 2, 1):
# Diff in log scale
_stable_inplace_diff_in_log(func_vec, signs_func_vec, n=n + 2 - i)
deltas[i] = func_vec[0]
signs_deltas[i] = signs_func_vec[0]
return deltas, signs_deltas
def _compute_rdp(q, sigma, alpha):
"""Compute RDP of the Sampled Gaussian mechanism at order alpha.
Args:
q: The sampling rate.
sigma: The std of the additive Gaussian noise.
alpha: The order at which RDP is computed.
Returns:
RDP at alpha, can be np.inf.
"""
if q == 0:
return 0
if q == 1.:
return alpha / (2 * sigma**2)
if np.isinf(alpha):
return np.inf
return _compute_log_a(q, sigma, alpha) / (alpha - 1)
return rdp
def compute_rdp(q, noise_multiplier, steps, orders):
"""Computes RDP of the Sampled Gaussian Mechanism.
"""(Deprecated) Computes RDP of the Sampled Gaussian Mechanism.
This function has been superseded by more general accounting mechanisms in
Google's `differential_privacy` package. It may at some future date be
removed.
Args:
q: The sampling rate.
@ -384,17 +96,18 @@ def compute_rdp(q, noise_multiplier, steps, orders):
Returns:
The RDPs at all orders. Can be `np.inf`.
"""
if np.isscalar(orders):
rdp = _compute_rdp(q, noise_multiplier, orders)
else:
rdp = np.array(
[_compute_rdp(q, noise_multiplier, order) for order in orders])
event = dp_event.PoissonSampledDpEvent(
q, dp_event.GaussianDpEvent(noise_multiplier))
return rdp * steps
return _compute_rdp_from_event(orders, event, steps)
def compute_rdp_sample_without_replacement(q, noise_multiplier, steps, orders):
"""Compute RDP of Gaussian Mechanism using sampling without replacement.
"""(Deprecated) Compute RDP of Gaussian Mechanism sampling w/o replacement.
This function has been superseded by more general accounting mechanisms in
Google's `differential_privacy` package. It may at some future date be
removed.
This function applies to the following schemes:
1. Sampling w/o replacement: Sample a uniformly random subset of size m = q*n.
@ -416,129 +129,19 @@ def compute_rdp_sample_without_replacement(q, noise_multiplier, steps, orders):
Returns:
The RDPs at all orders, can be np.inf.
"""
if np.isscalar(orders):
rdp = _compute_rdp_sample_without_replacement_scalar(
q, noise_multiplier, orders)
else:
rdp = np.array([
_compute_rdp_sample_without_replacement_scalar(q, noise_multiplier,
order)
for order in orders
])
event = dp_event.SampledWithoutReplacementDpEvent(
1, q, dp_event.GaussianDpEvent(noise_multiplier))
return rdp * steps
def _compute_rdp_sample_without_replacement_scalar(q, sigma, alpha):
"""Compute RDP of the Sampled Gaussian mechanism at order alpha.
Args:
q: The sampling proportion = m / n. Assume m is an integer <= n.
sigma: The std of the additive Gaussian noise.
alpha: The order at which RDP is computed.
Returns:
RDP at alpha, can be np.inf.
"""
assert (q <= 1) and (q >= 0) and (alpha >= 1)
if q == 0:
return 0
if q == 1.:
return alpha / (2 * sigma**2)
if np.isinf(alpha):
return np.inf
if float(alpha).is_integer():
return _compute_rdp_sample_without_replacement_int(q, sigma, alpha) / (
alpha - 1)
else:
# When alpha not an integer, we apply Corollary 10 of [WBK19] to interpolate
# the CGF and obtain an upper bound
alpha_f = math.floor(alpha)
alpha_c = math.ceil(alpha)
x = _compute_rdp_sample_without_replacement_int(q, sigma, alpha_f)
y = _compute_rdp_sample_without_replacement_int(q, sigma, alpha_c)
t = alpha - alpha_f
return ((1 - t) * x + t * y) / (alpha - 1)
def _compute_rdp_sample_without_replacement_int(q, sigma, alpha):
"""Compute log(A_alpha) for integer alpha, subsampling without replacement.
When alpha is smaller than max_alpha, compute the bound Theorem 27 exactly,
otherwise compute the bound with Stirling approximation.
Args:
q: The sampling proportion = m / n. Assume m is an integer <= n.
sigma: The std of the additive Gaussian noise.
alpha: The order at which RDP is computed.
Returns:
RDP at alpha, can be np.inf.
"""
max_alpha = 256
assert isinstance(alpha, int)
if np.isinf(alpha):
return np.inf
elif alpha == 1:
return 0
def cgf(x):
# Return rdp(x+1)*x, the rdp of Gaussian mechanism is alpha/(2*sigma**2)
return x * 1.0 * (x + 1) / (2.0 * sigma**2)
def func(x):
# Return the rdp of Gaussian mechanism
return 1.0 * x / (2.0 * sigma**2)
# Initialize with 1 in the log space.
log_a = 0
# Calculates the log term when alpha = 2
log_f2m1 = func(2.0) + np.log(1 - np.exp(-func(2.0)))
if alpha <= max_alpha:
# We need forward differences of exp(cgf)
# The following line is the numerically stable way of implementing it.
# The output is in polar form with logarithmic magnitude
deltas, _ = _get_forward_diffs(cgf, alpha)
# Compute the bound exactly requires book keeping of O(alpha**2)
for i in range(2, alpha + 1):
if i == 2:
s = 2 * np.log(q) + _log_comb(alpha, 2) + np.minimum(
np.log(4) + log_f2m1,
func(2.0) + np.log(2))
elif i > 2:
delta_lo = deltas[int(2 * np.floor(i / 2.0)) - 1]
delta_hi = deltas[int(2 * np.ceil(i / 2.0)) - 1]
s = np.log(4) + 0.5 * (delta_lo + delta_hi)
s = np.minimum(s, np.log(2) + cgf(i - 1))
s += i * np.log(q) + _log_comb(alpha, i)
log_a = _log_add(log_a, s)
return float(log_a)
else:
# Compute the bound with stirling approximation. Everything is O(x) now.
for i in range(2, alpha + 1):
if i == 2:
s = 2 * np.log(q) + _log_comb(alpha, 2) + np.minimum(
np.log(4) + log_f2m1,
func(2.0) + np.log(2))
else:
s = np.log(2) + cgf(i - 1) + i * np.log(q) + _log_comb(alpha, i)
log_a = _log_add(log_a, s)
return log_a
return _compute_rdp_from_event(orders, event, steps)
def compute_heterogeneous_rdp(sampling_probabilities, noise_multipliers,
steps_list, orders):
"""Computes RDP of Heteregoneous Applications of Sampled Gaussian Mechanisms.
"""(Deprecated) Computes RDP of Heteregoneous Sampled Gaussian Mechanisms.
This function has been superseded by more general accounting mechanisms in
Google's `differential_privacy` package. It may at some future date be
removed.
Args:
sampling_probabilities: A list containing the sampling rates.
@ -563,7 +166,11 @@ def compute_heterogeneous_rdp(sampling_probabilities, noise_multipliers,
def get_privacy_spent(orders, rdp, target_eps=None, target_delta=None):
"""Computes delta (or eps) for given eps (or delta) from RDP values.
"""(Deprecated) Computes delta or eps from RDP values.
This function has been superseded by more general accounting mechanisms in
Google's `differential_privacy` package. It may at some future date be
removed.
Args:
orders: An array (or a scalar) of RDP orders.
@ -588,9 +195,12 @@ def get_privacy_spent(orders, rdp, target_eps=None, target_delta=None):
raise ValueError(
"Exactly one out of eps and delta must be None. (None is).")
accountant = rdp_privacy_accountant.RdpAccountant(orders)
accountant._rdp = rdp # pylint: disable=protected-access
if target_eps is not None:
delta, opt_order = _compute_delta(orders, rdp, target_eps)
delta, opt_order = accountant.get_delta_and_optimal_order(target_eps)
return target_eps, delta, opt_order
else:
eps, opt_order = _compute_eps(orders, rdp, target_delta)
eps, opt_order = accountant.get_epsilon_and_optimal_order(target_delta)
return eps, target_delta, opt_order

View file

@ -23,26 +23,27 @@ import tensorflow as tf
from tensorflow_privacy.privacy.analysis import rdp_accountant
#################################
# HELPER FUNCTIONS: #
# Exact computations using #
# multi-precision arithmetic. #
#################################
class TestGaussianMoments(tf.test.TestCase, parameterized.TestCase):
#################################
# HELPER FUNCTIONS: #
# Exact computations using #
# multi-precision arithmetic. #
#################################
def _log_float_mp(self, x):
def _log_float_mp(x):
# Convert multi-precision input to float log space.
if x >= sys.float_info.min:
return float(mpmath.log(x))
else:
return -np.inf
def _integral_mp(self, fn, bounds=(-mpmath.inf, mpmath.inf)):
def _integral_mp(fn, bounds=(-mpmath.inf, mpmath.inf)):
integral, _ = mpmath.quad(fn, bounds, error=True, maxdegree=8)
return integral
def _distributions_mp(self, sigma, q):
def _distributions_mp(sigma, q):
def _mu0(x):
return mpmath.npdf(x, mu=0, sigma=sigma)
@ -55,20 +56,26 @@ class TestGaussianMoments(tf.test.TestCase, parameterized.TestCase):
return _mu0, _mu # Closure!
def _mu1_over_mu0(self, x, sigma):
def _mu1_over_mu0(x, sigma):
# Closed-form expression for N(1, sigma^2) / N(0, sigma^2) at x.
return mpmath.exp((2 * x - 1) / (2 * sigma**2))
def _mu_over_mu0(self, x, q, sigma):
return (1 - q) + q * self._mu1_over_mu0(x, sigma)
def _compute_a_mp(self, sigma, q, alpha):
def _mu_over_mu0(x, q, sigma):
return (1 - q) + q * _mu1_over_mu0(x, sigma)
def _compute_a_mp(sigma, q, alpha):
"""Compute A_alpha for arbitrary alpha by numerical integration."""
mu0, _ = self._distributions_mp(sigma, q)
a_alpha_fn = lambda z: mu0(z) * self._mu_over_mu0(z, q, sigma)**alpha
a_alpha = self._integral_mp(a_alpha_fn)
mu0, _ = _distributions_mp(sigma, q)
a_alpha_fn = lambda z: mu0(z) * _mu_over_mu0(z, q, sigma)**alpha
a_alpha = _integral_mp(a_alpha_fn)
return a_alpha
class TestGaussianMoments(tf.test.TestCase, parameterized.TestCase):
# TEST ROUTINES
def test_compute_heterogeneous_rdp_different_sampling_probabilities(self):
sampling_probabilities = [0, 1]
@ -152,15 +159,6 @@ class TestGaussianMoments(tf.test.TestCase, parameterized.TestCase):
'order': 256.1
})
# pylint:disable=undefined-variable
@parameterized.parameters(p for p in params)
def test_compute_log_a_equals_mp(self, q, sigma, order):
# Compare the cheap computation of log(A) with an expensive, multi-precision
# computation.
log_a = rdp_accountant._compute_log_a(q, sigma, order)
log_a_mp = self._log_float_mp(self._compute_a_mp(sigma, q, order))
np.testing.assert_allclose(log_a, log_a_mp, rtol=1e-4)
def test_get_privacy_spent_check_target_delta(self):
orders = range(2, 33)
rdp = [1.1 for o in orders] # Constant corresponds to pure DP.