forked from 626_privacy/tensorflow_privacy
add ReLUs to tutorial model
PiperOrigin-RevId: 232073877
This commit is contained in:
parent
098c5220b5
commit
8c99088cf1
1 changed files with 7 additions and 3 deletions
|
@ -47,12 +47,16 @@ def cnn_model_fn(features, labels, mode):
|
|||
input_layer = tf.reshape(features['x'], [-1, 28, 28, 1])
|
||||
y = tf.keras.layers.Conv2D(16, 8,
|
||||
strides=2,
|
||||
padding='same').apply(input_layer)
|
||||
padding='same',
|
||||
activation='relu').apply(input_layer)
|
||||
y = tf.keras.layers.MaxPool2D(2, 1).apply(y)
|
||||
y = tf.keras.layers.Conv2D(32, 4, strides=2, padding='valid').apply(y)
|
||||
y = tf.keras.layers.Conv2D(32, 4,
|
||||
strides=2,
|
||||
padding='valid',
|
||||
activation='relu').apply(y)
|
||||
y = tf.keras.layers.MaxPool2D(2, 1).apply(y)
|
||||
y = tf.keras.layers.Flatten().apply(y)
|
||||
y = tf.keras.layers.Dense(32).apply(y)
|
||||
y = tf.keras.layers.Dense(32, activation='relu').apply(y)
|
||||
logits = tf.keras.layers.Dense(10).apply(y)
|
||||
|
||||
# Calculate loss as a vector (to support microbatches in DP-SGD).
|
||||
|
|
Loading…
Reference in a new issue