forked from 626_privacy/tensorflow_privacy
Write to Tensorboard in Keras under TF2.
PiperOrigin-RevId: 349446504
This commit is contained in:
parent
b6413a4ea9
commit
8d53d8cc59
4 changed files with 79 additions and 21 deletions
|
@ -19,7 +19,7 @@ import os
|
|||
from typing import Iterable
|
||||
from absl import logging
|
||||
|
||||
import tensorflow.compat.v1 as tf
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.membership_inference_attack import membership_inference_attack as mia
|
||||
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackInputData
|
||||
|
@ -27,7 +27,7 @@ from tensorflow_privacy.privacy.membership_inference_attack.data_structures impo
|
|||
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import get_flattened_attack_metrics
|
||||
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import SlicingSpec
|
||||
from tensorflow_privacy.privacy.membership_inference_attack.utils import log_loss
|
||||
from tensorflow_privacy.privacy.membership_inference_attack.utils_tensorboard import write_results_to_tensorboard
|
||||
from tensorflow_privacy.privacy.membership_inference_attack.utils_tensorboard import write_results_to_tensorboard_tf2 as write_results_to_tensorboard
|
||||
|
||||
|
||||
def calculate_losses(model, data, labels):
|
||||
|
@ -76,14 +76,12 @@ class MembershipInferenceCallback(tf.keras.callbacks.Callback):
|
|||
if tensorboard_dir:
|
||||
if tensorboard_merge_classifiers:
|
||||
self._writers = {}
|
||||
with tf.Graph().as_default():
|
||||
for attack_type in attack_types:
|
||||
self._writers[attack_type.name] = tf.summary.FileWriter(
|
||||
os.path.join(tensorboard_dir, 'MI', attack_type.name))
|
||||
for attack_type in attack_types:
|
||||
self._writers[attack_type.name] = tf.summary.create_file_writer(
|
||||
os.path.join(tensorboard_dir, 'MI', attack_type.name))
|
||||
else:
|
||||
with tf.Graph().as_default():
|
||||
self._writers = tf.summary.FileWriter(
|
||||
os.path.join(tensorboard_dir, 'MI'))
|
||||
self._writers = tf.summary.create_file_writer(
|
||||
os.path.join(tensorboard_dir, 'MI'))
|
||||
logging.info('Will write to tensorboard.')
|
||||
else:
|
||||
self._writers = None
|
||||
|
|
|
@ -19,7 +19,7 @@ from absl import app
|
|||
from absl import flags
|
||||
|
||||
import numpy as np
|
||||
import tensorflow.compat.v1 as tf
|
||||
import tensorflow as tf
|
||||
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackType
|
||||
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import get_flattened_attack_metrics
|
||||
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import SlicingSpec
|
||||
|
|
|
@ -102,7 +102,7 @@ def main(unused_argv):
|
|||
x_train, y_train, x_test, y_test = load_cifar10()
|
||||
|
||||
# Instantiate the tf.Estimator.
|
||||
mnist_classifier = tf.estimator.Estimator(
|
||||
classifier = tf.estimator.Estimator(
|
||||
model_fn=small_cnn_fn, model_dir=FLAGS.model_dir)
|
||||
|
||||
# A function to construct input_fn given (data, label), to be used by the
|
||||
|
@ -112,7 +112,7 @@ def main(unused_argv):
|
|||
|
||||
# Get hook for membership inference attack.
|
||||
mia_hook = MembershipInferenceTrainingHook(
|
||||
mnist_classifier,
|
||||
classifier,
|
||||
(x_train, y_train),
|
||||
(x_test, y_test),
|
||||
input_fn_constructor,
|
||||
|
@ -133,20 +133,20 @@ def main(unused_argv):
|
|||
x={'x': x_test}, y=y_test, num_epochs=1, shuffle=False)
|
||||
|
||||
# Training loop.
|
||||
steps_per_epoch = 60000 // FLAGS.batch_size
|
||||
steps_per_epoch = 50000 // FLAGS.batch_size
|
||||
for epoch in range(1, FLAGS.epochs + 1):
|
||||
# Train the model, with the membership inference hook.
|
||||
mnist_classifier.train(
|
||||
classifier.train(
|
||||
input_fn=train_input_fn, steps=steps_per_epoch, hooks=[mia_hook])
|
||||
|
||||
# Evaluate the model and print results
|
||||
eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
|
||||
eval_results = classifier.evaluate(input_fn=eval_input_fn)
|
||||
test_accuracy = eval_results['accuracy']
|
||||
print('Test accuracy after %d epochs is: %.3f' % (epoch, test_accuracy))
|
||||
|
||||
print('End of training attack')
|
||||
attack_results = run_attack_on_tf_estimator_model(
|
||||
mnist_classifier, (x_train, y_train), (x_test, y_test),
|
||||
classifier, (x_train, y_train), (x_test, y_test),
|
||||
input_fn_constructor,
|
||||
slicing_spec=SlicingSpec(entire_dataset=True, by_class=True),
|
||||
attack_types=[AttackType.THRESHOLD_ATTACK, AttackType.K_NEAREST_NEIGHBORS]
|
||||
|
|
|
@ -17,7 +17,8 @@
|
|||
from typing import List
|
||||
from typing import Union
|
||||
|
||||
import tensorflow.compat.v1 as tf
|
||||
import tensorflow as tf2
|
||||
import tensorflow.compat.v1 as tf1
|
||||
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackResults
|
||||
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import get_flattened_attack_metrics
|
||||
|
||||
|
@ -41,7 +42,7 @@ def write_to_tensorboard(writers, tags, values, step):
|
|||
assert len(writers) == len(tags) == len(values)
|
||||
|
||||
for writer, tag, val in zip(writers, tags, values):
|
||||
summary = tf.Summary()
|
||||
summary = tf1.Summary()
|
||||
summary.value.add(tag=tag, simple_value=val)
|
||||
writer.add_summary(summary, step)
|
||||
|
||||
|
@ -49,9 +50,37 @@ def write_to_tensorboard(writers, tags, values, step):
|
|||
writer.flush()
|
||||
|
||||
|
||||
def write_to_tensorboard_tf2(writers, tags, values, step):
|
||||
"""Write metrics to tensorboard.
|
||||
|
||||
Args:
|
||||
writers: a list of tensorboard writers or one writer to be used for metrics.
|
||||
If it's a list, it should be of the same length as tags
|
||||
tags: a list of tags of metrics
|
||||
values: a list of values of metrics with the same length as tags
|
||||
step: step for the tensorboard summary
|
||||
"""
|
||||
if writers is None or not writers:
|
||||
raise ValueError('write_to_tensorboard does not get any writer.')
|
||||
|
||||
if not isinstance(writers, list):
|
||||
writers = [writers] * len(tags)
|
||||
|
||||
assert len(writers) == len(tags) == len(values)
|
||||
|
||||
for writer, tag, val in zip(writers, tags, values):
|
||||
with writer.as_default():
|
||||
tf2.summary.scalar(tag, val, step=step)
|
||||
writer.flush()
|
||||
|
||||
for writer in set(writers):
|
||||
with writer.as_default():
|
||||
writer.flush()
|
||||
|
||||
|
||||
def write_results_to_tensorboard(
|
||||
attack_results: AttackResults,
|
||||
writers: Union[tf.summary.FileWriter, List[tf.summary.FileWriter]],
|
||||
writers: Union[tf1.summary.FileWriter, List[tf1.summary.FileWriter]],
|
||||
step: int,
|
||||
merge_classifiers: bool):
|
||||
"""Write attack results to tensorboard.
|
||||
|
@ -69,11 +98,42 @@ def write_results_to_tensorboard(
|
|||
att_types, att_slices, att_metrics, att_values = get_flattened_attack_metrics(
|
||||
attack_results)
|
||||
if merge_classifiers:
|
||||
att_tags = ['attack/' + '_'.join([s, m]) for s, m in
|
||||
att_tags = ['attack/' + f'{s}_{m}' for s, m in
|
||||
zip(att_slices, att_metrics)]
|
||||
write_to_tensorboard([writers[t] for t in att_types],
|
||||
att_tags, att_values, step)
|
||||
else:
|
||||
att_tags = ['attack/' + '_'.join([s, t, m]) for t, s, m in
|
||||
att_tags = ['attack/' + f'{s}_{t}_{m}' for t, s, m in
|
||||
zip(att_types, att_slices, att_metrics)]
|
||||
write_to_tensorboard(writers, att_tags, att_values, step)
|
||||
|
||||
|
||||
def write_results_to_tensorboard_tf2(
|
||||
attack_results: AttackResults,
|
||||
writers: Union[tf2.summary.SummaryWriter, List[tf2.summary.SummaryWriter]],
|
||||
step: int,
|
||||
merge_classifiers: bool):
|
||||
"""Write attack results to tensorboard.
|
||||
|
||||
Args:
|
||||
attack_results: results from attack
|
||||
writers: a list of tensorboard writers or one writer to be used for metrics
|
||||
step: step for the tensorboard summary
|
||||
merge_classifiers: if true, plot different classifiers with the same
|
||||
slicing_spec and metric in the same figure
|
||||
"""
|
||||
if writers is None or not writers:
|
||||
raise ValueError('write_results_to_tensorboard does not get any writer.')
|
||||
|
||||
att_types, att_slices, att_metrics, att_values = get_flattened_attack_metrics(
|
||||
attack_results)
|
||||
if merge_classifiers:
|
||||
att_tags = ['attack/' + f'{s}_{m}' for s, m in
|
||||
zip(att_slices, att_metrics)]
|
||||
write_to_tensorboard_tf2([writers[t] for t in att_types],
|
||||
att_tags, att_values, step)
|
||||
else:
|
||||
att_tags = ['attack/' + f'{s}_{t}_{m}' for t, s, m in
|
||||
zip(att_types, att_slices, att_metrics)]
|
||||
write_to_tensorboard_tf2(writers, att_tags, att_values, step)
|
||||
|
||||
|
|
Loading…
Reference in a new issue