forked from 626_privacy/tensorflow_privacy
Minor code cleanup to compute_dp_sgd_privacy_lib and update dp_accounting dependency.
PiperOrigin-RevId: 550695787
This commit is contained in:
parent
c1c97f1c1c
commit
8e60864559
2 changed files with 24 additions and 37 deletions
|
@ -15,9 +15,9 @@ git_repository(
|
|||
tag = "0.5.0",
|
||||
)
|
||||
|
||||
dp_lib_commit = "ab98ce4d4e41bf420198b2284a75d6a7dd4e9044"
|
||||
dp_lib_tar_sha256 = "314d7b0938e6a6b425d449c219237f0367cb44f649b2614497799618f3b4660e"
|
||||
dp_lib_url = "https://github.com/google/differential-privacy/archive/" + dp_lib_commit + ".tar.gz"
|
||||
dp_lib_release = "2.1.0"
|
||||
dp_lib_tar_sha256 = "b2e9afb2ea9337bb7c6302545b72e938707e8cdb3558ef38ce5cdd12fe2f182c"
|
||||
dp_lib_url = "https://github.com/google/differential-privacy/archive/refs/tags/v" + dp_lib_release + ".tar.gz"
|
||||
|
||||
http_archive(
|
||||
name = "com_google_differential_py",
|
||||
|
@ -25,7 +25,7 @@ http_archive(
|
|||
urls = [
|
||||
dp_lib_url,
|
||||
],
|
||||
strip_prefix = "differential-privacy-" + dp_lib_commit + "/python",
|
||||
strip_prefix = "differential-privacy-" + dp_lib_release + "/python",
|
||||
)
|
||||
|
||||
# Load transitive dependencies of the DP accounting library.
|
||||
|
|
|
@ -14,6 +14,7 @@
|
|||
# ==============================================================================
|
||||
"""Library for computing privacy values for DP-SGD."""
|
||||
|
||||
import functools
|
||||
import math
|
||||
import textwrap
|
||||
from typing import Optional
|
||||
|
@ -107,21 +108,19 @@ def _compute_dp_sgd_user_privacy(
|
|||
|
||||
target_user_log_delta = math.log(user_delta)
|
||||
|
||||
# We store all example_eps computed for any example_delta in the following
|
||||
# method. This is done so that we don't have to recompute values for the same
|
||||
# delta.
|
||||
epsilon_cache = dict()
|
||||
# Cache example privacy values, which can be expensive.
|
||||
@functools.cache
|
||||
def get_example_eps(example_log_delta):
|
||||
return _compute_dp_sgd_example_privacy(
|
||||
num_epochs,
|
||||
noise_multiplier,
|
||||
math.exp(example_log_delta),
|
||||
used_microbatching,
|
||||
poisson_subsampling_probability,
|
||||
)
|
||||
|
||||
def user_log_delta_gap(example_log_delta):
|
||||
if example_log_delta not in epsilon_cache:
|
||||
epsilon_cache[example_log_delta] = _compute_dp_sgd_example_privacy(
|
||||
num_epochs,
|
||||
noise_multiplier,
|
||||
math.exp(example_log_delta),
|
||||
used_microbatching,
|
||||
poisson_subsampling_probability,
|
||||
)
|
||||
example_eps = epsilon_cache[example_log_delta]
|
||||
example_eps = get_example_eps(example_log_delta)
|
||||
|
||||
# Estimate user_eps, user_log_delta using Vadhan Lemma 2.2, using a tighter
|
||||
# bound seen in the penultimate line of the proof, given as
|
||||
|
@ -153,7 +152,7 @@ def _compute_dp_sgd_user_privacy(
|
|||
# because as example_delta decreases, example_eps increases. So it is
|
||||
# possible for user_delta (which increases in both example_delta and
|
||||
# example_eps) to diverge to infinity as example_delta goes to zero.
|
||||
logging.warn(
|
||||
logging.warning(
|
||||
(
|
||||
'No upper bound on user-level DP epsilon can be computed with %s '
|
||||
'examples per user.'
|
||||
|
@ -180,16 +179,7 @@ def _compute_dp_sgd_user_privacy(
|
|||
)
|
||||
|
||||
# Vadhan (2017) "The complexity of differential privacy" Lemma 2.2.
|
||||
if example_log_delta not in epsilon_cache:
|
||||
epsilon_cache[example_log_delta] = _compute_dp_sgd_example_privacy(
|
||||
num_epochs,
|
||||
noise_multiplier,
|
||||
math.exp(example_log_delta),
|
||||
used_microbatching,
|
||||
poisson_subsampling_probability,
|
||||
)
|
||||
example_eps = epsilon_cache[example_log_delta]
|
||||
return max_examples_per_user * example_eps
|
||||
return max_examples_per_user * get_example_eps(example_log_delta)
|
||||
|
||||
|
||||
def _compute_dp_sgd_example_privacy(
|
||||
|
@ -238,14 +228,11 @@ def _compute_dp_sgd_example_privacy(
|
|||
count = int(math.ceil(num_epochs))
|
||||
event_ = dp_accounting.SelfComposedDpEvent(count=count, event=event_)
|
||||
|
||||
rdp_orders = (
|
||||
[1 + x / 10.0 for x in range(1, 100)]
|
||||
+ list(range(11, 64))
|
||||
+ [128, 256, 512, 1024]
|
||||
)
|
||||
accountant = dp_accounting.rdp.RdpAccountant(rdp_orders) # TODO(b/271341062)
|
||||
accountant.compose(event_)
|
||||
return accountant.get_epsilon(example_delta)
|
||||
return (
|
||||
dp_accounting.rdp.RdpAccountant()
|
||||
.compose(event_)
|
||||
.get_epsilon(example_delta)
|
||||
) # TODO(b/271341062)
|
||||
|
||||
|
||||
def compute_dp_sgd_privacy_statement(
|
||||
|
@ -432,7 +419,7 @@ def compute_dp_sgd_privacy(n, batch_size, noise_multiplier, epochs, delta):
|
|||
Returns:
|
||||
A 2-tuple containing the value of epsilon and the optimal RDP order.
|
||||
"""
|
||||
logging.warn("""\
|
||||
logging.warning("""\
|
||||
`compute_dp_sgd_privacy` is deprecated. It does not account for doubling of \
|
||||
sensitivity with microbatching, and assumes Poisson subsampling, which is \
|
||||
rarely used in practice. Please use `compute_dp_sgd_privacy_statement`, which \
|
||||
|
|
Loading…
Reference in a new issue