forked from 626_privacy/tensorflow_privacy
Integrate the fast gradient clipping algorithm with the DP Keras Model class.
PiperOrigin-RevId: 504931452
This commit is contained in:
parent
bc84ed7bfb
commit
9ed34da715
4 changed files with 264 additions and 119 deletions
|
@ -93,8 +93,6 @@ def compute_gradient_norms(input_model, x_batch, y_batch, layer_registry):
|
|||
loss_config['reduction'] = tf.keras.losses.Reduction.NONE
|
||||
per_example_loss_fn = input_model.loss.from_config(loss_config)
|
||||
losses = per_example_loss_fn(y_batch, model_outputs)
|
||||
if tf.rank(tf.squeeze(losses)) > 1:
|
||||
raise NotImplementedError('Vector losses are not supported.')
|
||||
summed_loss = tf.reduce_sum(losses)
|
||||
# Second loop computes the norm of the gradient of the loss with respect to
|
||||
# the pre-activation tensors, and multiplies these norms with the results of
|
||||
|
|
|
@ -15,6 +15,11 @@ py_library(
|
|||
"dp_keras_model.py",
|
||||
],
|
||||
srcs_version = "PY3",
|
||||
deps = [
|
||||
"//tensorflow_privacy/privacy/fast_gradient_clipping:clip_grads",
|
||||
"//tensorflow_privacy/privacy/fast_gradient_clipping:gradient_clipping_utils",
|
||||
"//tensorflow_privacy/privacy/fast_gradient_clipping:layer_registry_factories",
|
||||
],
|
||||
)
|
||||
|
||||
py_test(
|
||||
|
@ -22,5 +27,8 @@ py_test(
|
|||
srcs = ["dp_keras_model_test.py"],
|
||||
python_version = "PY3",
|
||||
srcs_version = "PY3",
|
||||
deps = ["//tensorflow_privacy/privacy/keras_models:dp_keras_model"],
|
||||
deps = [
|
||||
"//tensorflow_privacy/privacy/fast_gradient_clipping:layer_registry_factories",
|
||||
"//tensorflow_privacy/privacy/keras_models:dp_keras_model",
|
||||
],
|
||||
)
|
||||
|
|
|
@ -13,19 +13,38 @@
|
|||
# limitations under the License.
|
||||
"""Keras Model for vectorized dpsgd with XLA acceleration."""
|
||||
|
||||
from absl import logging
|
||||
import tensorflow as tf
|
||||
from tensorflow_privacy.privacy.fast_gradient_clipping import clip_grads
|
||||
from tensorflow_privacy.privacy.fast_gradient_clipping import gradient_clipping_utils
|
||||
|
||||
|
||||
def make_dp_model_class(cls):
|
||||
"""Given a subclass of `tf.keras.Model`, returns a DP-SGD version of it."""
|
||||
|
||||
class DPModelClass(cls): # pylint: disable=empty-docstring
|
||||
__doc__ = ("""DP subclass of `{base_model}`.
|
||||
class DPModelClass(cls): # pylint: disable=missing-class-docstring
|
||||
__doc__ = (
|
||||
"""DP subclass of `{base_model}`.
|
||||
|
||||
This can be used as a differentially private replacement for
|
||||
{base_model}. This class implements DP-SGD using the standard
|
||||
Gaussian mechanism.
|
||||
|
||||
This class also utilizes a faster gradient clipping algorithm if the
|
||||
following two conditions hold:
|
||||
(i) the trainable layers of the model are keys in the `dict` input
|
||||
`layer_registry`,
|
||||
(ii) the loss `tf.Tensor` for a given batch of examples is either a
|
||||
scalar or a 2D `tf.Tensor` that has only one column
|
||||
`(i.e., tf.shape(loss)[1] == 1)` and whose i-th row corresponds to
|
||||
the loss of the i-th example.
|
||||
This clipping algorithm specifically computes clipped gradients at the
|
||||
per-example level using the layer registry functions in `layer_registry`
|
||||
(see clip_grads.py for more information about the algorithm). In this
|
||||
setting, microbatching is not used (it is equivalent to
|
||||
`num_microbatches == batch_size`), and the input `num_microbatches`
|
||||
is ignored.
|
||||
|
||||
When instantiating this class, you need to supply several
|
||||
DP-related arguments followed by the standard arguments for
|
||||
`{short_base_model}`.
|
||||
|
@ -53,10 +72,12 @@ def make_dp_model_class(cls):
|
|||
model.fit(train_data, train_labels, epochs=1, batch_size=32)
|
||||
```
|
||||
|
||||
""").format(
|
||||
"""
|
||||
).format(
|
||||
base_model='tf.keras.' + cls.__name__,
|
||||
short_base_model=cls.__name__,
|
||||
dp_model_class='DP' + cls.__name__)
|
||||
dp_model_class='DP' + cls.__name__,
|
||||
)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
|
@ -64,24 +85,31 @@ def make_dp_model_class(cls):
|
|||
noise_multiplier,
|
||||
num_microbatches=None,
|
||||
use_xla=True,
|
||||
layer_registry=None,
|
||||
*args, # pylint: disable=keyword-arg-before-vararg, g-doc-args
|
||||
**kwargs):
|
||||
**kwargs,
|
||||
):
|
||||
"""Initializes the DPModelClass.
|
||||
|
||||
Args:
|
||||
l2_norm_clip: Clipping norm (max L2 norm of per microbatch
|
||||
gradients).
|
||||
noise_multiplier: Ratio of the standard deviation to the clipping
|
||||
norm.
|
||||
l2_norm_clip: Clipping norm (max L2 norm of per microbatch gradients).
|
||||
noise_multiplier: Ratio of the standard deviation to the clipping norm.
|
||||
num_microbatches: Number of microbatches.
|
||||
use_xla: If `True`, compiles train_step to XLA.
|
||||
layer_registry: A `dict` of layers that support "fast" gradient norm
|
||||
computations. The key is the class of the layer and the value is a
|
||||
function that returns a `tuple` `(output, sqr_grad_norms, vars)`,
|
||||
where `output` is the pre-activator tensor, `sqr_grad_norms` is
|
||||
related to the squared norms of a layer's pre-activation tensor, and
|
||||
`vars` are relevant trainable weights (see
|
||||
`layer_registry_factories.py` for examples).
|
||||
*args: These will be passed on to the base class `__init__` method.
|
||||
**kwargs: These will be passed on to the base class `__init__`
|
||||
method.
|
||||
**kwargs: These will be passed on to the base class `__init__` method.
|
||||
"""
|
||||
super().__init__(*args, **kwargs)
|
||||
self._l2_norm_clip = l2_norm_clip
|
||||
self._noise_multiplier = noise_multiplier
|
||||
self._layer_registry = layer_registry
|
||||
|
||||
# Given that `num_microbatches` was added as an argument after the fact,
|
||||
# this check helps detect unintended calls to the earlier API.
|
||||
|
@ -91,7 +119,27 @@ def make_dp_model_class(cls):
|
|||
raise ValueError('Boolean value supplied for `num_microbatches`. '
|
||||
'Did you intend it for `use_xla`?')
|
||||
|
||||
# If all the trainable layers are in the input layer registry, we
|
||||
# don't need to use microbatching and can instead use the "fast"
|
||||
# chain rule trick for computing per-example gradients (peg).
|
||||
if (
|
||||
layer_registry is not None
|
||||
and gradient_clipping_utils.all_trainable_layers_are_registered(
|
||||
self, layer_registry
|
||||
)
|
||||
and gradient_clipping_utils.has_internal_compute_graph(self)
|
||||
):
|
||||
if num_microbatches is not None:
|
||||
raise ValueError(
|
||||
'Cannot initialize a model where num_microbatches '
|
||||
'is not `None` and all trainable layers are '
|
||||
'registered in layer_registry.'
|
||||
)
|
||||
self._num_microbatches = None
|
||||
self._enable_fast_peg_computation = True
|
||||
else:
|
||||
self._num_microbatches = num_microbatches
|
||||
self._enable_fast_peg_computation = False
|
||||
|
||||
if use_xla:
|
||||
self.train_step = tf.function(
|
||||
|
@ -126,7 +174,44 @@ def make_dp_model_class(cls):
|
|||
return y_pred, loss, clipped_grads
|
||||
|
||||
def train_step(self, data):
|
||||
"""DP-SGD version of base class method."""
|
||||
"""DP-SGD version of base class method.
|
||||
|
||||
Uses the "fast" gradient clipping algorithm to generate per-example
|
||||
clipped gradients if (i) all the trainable layers of the model are
|
||||
registered in the layer_registry input of the model constructor and
|
||||
(ii) if the model contains an internal compute graph (e.g., this
|
||||
condition is satisfied if the model subclasses the keras.Sequential or
|
||||
keras.engine.functional.Functional class).
|
||||
|
||||
If (i) and (ii) above do not hold, then clips and aggregates
|
||||
gradients at the microbatch level.
|
||||
|
||||
Args:
|
||||
data: see the base class.
|
||||
|
||||
Returns:
|
||||
See the base class.
|
||||
"""
|
||||
if self._enable_fast_peg_computation:
|
||||
logging.info(
|
||||
'Computing gradients using the fast per-example gradient '
|
||||
'norm algorithm.'
|
||||
)
|
||||
# Computes the per-example gradient norms using a "fast" clipping
|
||||
# trick, and uses these norms to clip the per-example gradients.
|
||||
x, y, _ = tf.keras.utils.unpack_x_y_sample_weight(data)
|
||||
y_pred, clipped_grads = clip_grads.compute_pred_and_clipped_gradients(
|
||||
self, x, y, self._l2_norm_clip, self._layer_registry
|
||||
)
|
||||
grads = gradient_clipping_utils.add_aggregate_noise(
|
||||
self, x, clipped_grads, self._l2_norm_clip, self._noise_multiplier
|
||||
)
|
||||
else:
|
||||
logging.info('Computing gradients using microbatching.')
|
||||
# Computes per-example clipped gradients directly. This is called
|
||||
# if at least one of the layers cannot use the "fast" gradient clipping
|
||||
# algorithm.
|
||||
# TODO(wkong): check if the following is valid with sample weights.
|
||||
_, y = data
|
||||
batch_size = y.shape[0]
|
||||
|
||||
|
@ -136,19 +221,25 @@ def make_dp_model_class(cls):
|
|||
raise ValueError('Number of_microbatches must divide batch size.')
|
||||
|
||||
def reshape_fn(x):
|
||||
new_shape = (self._num_microbatches,
|
||||
batch_size // self._num_microbatches) + x.shape[1:]
|
||||
new_shape = (
|
||||
self._num_microbatches,
|
||||
batch_size // self._num_microbatches,
|
||||
) + x.shape[1:]
|
||||
return tf.reshape(x, new_shape)
|
||||
|
||||
data = tf.nest.map_structure(reshape_fn, data)
|
||||
|
||||
y_pred, _, per_eg_grads = tf.vectorized_map(
|
||||
self._compute_per_example_grads, data)
|
||||
self._compute_per_example_grads, data
|
||||
)
|
||||
|
||||
y_pred = tf.reshape(y_pred, (batch_size) + y_pred.shape[2:])
|
||||
|
||||
grads = tf.nest.map_structure(self._reduce_per_example_grads,
|
||||
per_eg_grads)
|
||||
grads = tf.nest.map_structure(
|
||||
self._reduce_per_example_grads, per_eg_grads
|
||||
)
|
||||
|
||||
# Forward the private gradients to the optimizer and return the results.
|
||||
self.optimizer.apply_gradients(zip(grads, self.trainable_variables))
|
||||
self.compiled_metrics.update_state(y, y_pred)
|
||||
return {m.name: m.result() for m in self.metrics}
|
||||
|
|
|
@ -13,10 +13,9 @@
|
|||
# limitations under the License.
|
||||
|
||||
from absl.testing import parameterized
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.fast_gradient_clipping import layer_registry_factories
|
||||
from tensorflow_privacy.privacy.keras_models import dp_keras_model
|
||||
|
||||
|
||||
|
@ -29,6 +28,13 @@ def get_data():
|
|||
return data, labels
|
||||
|
||||
|
||||
def get_layer_registries():
|
||||
# Outputs a list of testable layer registries.
|
||||
# The empty registry {} tests the behavior of the standard approach,
|
||||
# while the other one tests the fast gradient clipping algorithm.
|
||||
return [{}, layer_registry_factories.make_default_layer_registry()]
|
||||
|
||||
|
||||
class DPKerasModelTest(tf.test.TestCase, parameterized.TestCase):
|
||||
|
||||
def testBaseline(self):
|
||||
|
@ -65,19 +71,22 @@ class DPKerasModelTest(tf.test.TestCase, parameterized.TestCase):
|
|||
"""Tests that clipping norm works."""
|
||||
train_data, train_labels = get_data()
|
||||
|
||||
for test_reg in get_layer_registries():
|
||||
# Simple linear model returns w * x + b.
|
||||
model = dp_keras_model.DPSequential(
|
||||
l2_norm_clip=l2_norm_clip,
|
||||
noise_multiplier=0.0,
|
||||
layer_registry=test_reg,
|
||||
layers=[
|
||||
tf.keras.layers.InputLayer(input_shape=(2,)),
|
||||
tf.keras.layers.Dense(
|
||||
1, kernel_initializer='zeros', bias_initializer='zeros')
|
||||
])
|
||||
1, kernel_initializer='zeros', bias_initializer='zeros'
|
||||
),
|
||||
],
|
||||
)
|
||||
learning_rate = 0.01
|
||||
optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate)
|
||||
loss = tf.keras.losses.MeanSquaredError()
|
||||
|
||||
model.compile(optimizer=optimizer, loss=loss)
|
||||
model.fit(train_data, train_labels, epochs=1, batch_size=1)
|
||||
|
||||
|
@ -98,9 +107,10 @@ class DPKerasModelTest(tf.test.TestCase, parameterized.TestCase):
|
|||
if num_microbatches is None:
|
||||
num_microbatches = batch_size
|
||||
|
||||
preds = np.matmul(data, w)
|
||||
preds = np.matmul(data, np.expand_dims(w, axis=1))
|
||||
|
||||
grads = 2 * data * (preds - labels)
|
||||
|
||||
grads = 2 * data * (labels - preds)[:, np.newaxis]
|
||||
grads = np.reshape(grads,
|
||||
[num_microbatches, batch_size // num_microbatches, -1])
|
||||
|
||||
|
@ -123,31 +133,44 @@ class DPKerasModelTest(tf.test.TestCase, parameterized.TestCase):
|
|||
def testMicrobatches(self, l2_norm_clip, num_microbatches):
|
||||
train_data = np.array([[2.0, 3.0], [4.0, 5.0], [6.0, 7.0], [8.0, 9.0]])
|
||||
w = np.zeros((2))
|
||||
train_labels = np.array([1.0, 3.0, -2.0, -4.0])
|
||||
train_labels = np.array([[1.0], [3.0], [-2.0], [-4.0]])
|
||||
learning_rate = 1.0
|
||||
|
||||
expected_grads = self._compute_expected_gradients(train_data, train_labels,
|
||||
w, l2_norm_clip,
|
||||
num_microbatches)
|
||||
expected_weights = np.squeeze(learning_rate * expected_grads)
|
||||
|
||||
for test_reg, test_nm in zip(
|
||||
get_layer_registries(), [num_microbatches, None]
|
||||
):
|
||||
optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate)
|
||||
loss = tf.keras.losses.MeanSquaredError()
|
||||
|
||||
# Simple linear model returns w * x + b.
|
||||
# Simple linear model returns w * x.
|
||||
model = dp_keras_model.DPSequential(
|
||||
l2_norm_clip=l2_norm_clip,
|
||||
noise_multiplier=0.0,
|
||||
num_microbatches=num_microbatches,
|
||||
num_microbatches=test_nm,
|
||||
layer_registry=test_reg,
|
||||
layers=[
|
||||
tf.keras.layers.InputLayer(input_shape=(2,)),
|
||||
tf.keras.layers.Dense(
|
||||
1, use_bias=False, kernel_initializer='zeros')
|
||||
])
|
||||
1, use_bias=False, kernel_initializer='zeros'
|
||||
),
|
||||
],
|
||||
)
|
||||
model.compile(optimizer=optimizer, loss=loss)
|
||||
model.fit(train_data, train_labels, epochs=1, batch_size=4, shuffle=False)
|
||||
|
||||
model_weights = np.squeeze(model.get_weights())
|
||||
|
||||
effective_num_microbatches = (
|
||||
train_data.shape[0]
|
||||
if model._num_microbatches is None
|
||||
else num_microbatches
|
||||
)
|
||||
|
||||
expected_grads = self._compute_expected_gradients(
|
||||
train_data, train_labels, w, l2_norm_clip, effective_num_microbatches
|
||||
)
|
||||
expected_weights = np.squeeze(-learning_rate * expected_grads)
|
||||
|
||||
self.assertAllClose(model_weights, expected_weights)
|
||||
|
||||
@parameterized.named_parameters(
|
||||
|
@ -168,9 +191,13 @@ class DPKerasModelTest(tf.test.TestCase, parameterized.TestCase):
|
|||
|
||||
# Data is one example of length 1000, set to zero, with label zero.
|
||||
train_data = np.zeros((4, 1000))
|
||||
train_labels = np.array([0.0, 0.0, 0.0, 0.0])
|
||||
train_labels = np.array([[0.0], [0.0], [0.0], [0.0]])
|
||||
|
||||
learning_rate = 1.0
|
||||
|
||||
for test_reg, test_nm in zip(
|
||||
get_layer_registries(), [num_microbatches, None]
|
||||
):
|
||||
optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate)
|
||||
loss = tf.keras.losses.MeanSquaredError()
|
||||
|
||||
|
@ -178,18 +205,29 @@ class DPKerasModelTest(tf.test.TestCase, parameterized.TestCase):
|
|||
model = dp_keras_model.DPSequential(
|
||||
l2_norm_clip=l2_norm_clip,
|
||||
noise_multiplier=noise_multiplier,
|
||||
num_microbatches=num_microbatches,
|
||||
num_microbatches=test_nm,
|
||||
layer_registry=test_reg,
|
||||
layers=[
|
||||
tf.keras.layers.InputLayer(input_shape=(1000,)),
|
||||
tf.keras.layers.Dense(
|
||||
1, kernel_initializer='zeros', bias_initializer='zeros')
|
||||
])
|
||||
1, kernel_initializer='zeros', bias_initializer='zeros'
|
||||
),
|
||||
],
|
||||
)
|
||||
model.compile(optimizer=optimizer, loss=loss)
|
||||
model.fit(train_data, train_labels, epochs=1, batch_size=4)
|
||||
|
||||
effective_num_microbatches = (
|
||||
train_data.shape[0]
|
||||
if model._num_microbatches is None
|
||||
else num_microbatches
|
||||
)
|
||||
|
||||
model_weights = model.get_weights()
|
||||
measured_std = np.std(model_weights[0])
|
||||
expected_std = l2_norm_clip * noise_multiplier / num_microbatches
|
||||
expected_std = (
|
||||
l2_norm_clip * noise_multiplier / effective_num_microbatches
|
||||
)
|
||||
|
||||
# Test standard deviation is close to l2_norm_clip * noise_multiplier.
|
||||
self.assertNear(measured_std, expected_std, 0.1 * expected_std)
|
||||
|
@ -197,28 +235,35 @@ class DPKerasModelTest(tf.test.TestCase, parameterized.TestCase):
|
|||
# Simple check to make sure dimensions are correct when output has
|
||||
# dimension > 1.
|
||||
@parameterized.named_parameters(
|
||||
('mb_test None 1', None, 1),
|
||||
('mb_test None 2', None, 2),
|
||||
('mb_test 1 2', 1, 2),
|
||||
('mb_test 2 2', 2, 2),
|
||||
('mb_test 4 4', 4, 4),
|
||||
)
|
||||
def testMultiDimensionalOutput(self, num_microbatches, output_dimension):
|
||||
train_data = np.array([[2.0, 3.0], [4.0, 5.0], [6.0, 7.0], [8.0, 9.0]])
|
||||
train_labels = np.array([0, 1, 1, 0])
|
||||
train_labels = np.array([[0], [1], [1], [0]])
|
||||
learning_rate = 1.0
|
||||
|
||||
for test_reg, test_nm in zip(
|
||||
get_layer_registries(), [num_microbatches, None]
|
||||
):
|
||||
optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate)
|
||||
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
|
||||
|
||||
model = dp_keras_model.DPSequential(
|
||||
l2_norm_clip=1.0e9,
|
||||
noise_multiplier=0.0,
|
||||
num_microbatches=num_microbatches,
|
||||
num_microbatches=test_nm,
|
||||
layer_registry=test_reg,
|
||||
layers=[
|
||||
tf.keras.layers.InputLayer(input_shape=(2,)),
|
||||
tf.keras.layers.Dense(
|
||||
output_dimension, use_bias=False, kernel_initializer='zeros')
|
||||
])
|
||||
output_dimension, use_bias=False, kernel_initializer='zeros'
|
||||
),
|
||||
tf.keras.layers.Dense(1),
|
||||
],
|
||||
)
|
||||
model.compile(optimizer=optimizer, loss=loss_fn)
|
||||
model.fit(train_data, train_labels, epochs=1, batch_size=4, shuffle=False)
|
||||
|
||||
|
@ -237,8 +282,11 @@ class DPKerasModelTest(tf.test.TestCase, parameterized.TestCase):
|
|||
layers=[
|
||||
tf.keras.layers.InputLayer(input_shape=(2,)),
|
||||
tf.keras.layers.Dense(
|
||||
2, use_bias=False, kernel_initializer='zeros')
|
||||
])
|
||||
2, use_bias=False, kernel_initializer='zeros'
|
||||
),
|
||||
tf.keras.layers.Dense(1),
|
||||
],
|
||||
)
|
||||
|
||||
if __name__ == '__main__':
|
||||
tf.test.main()
|
||||
|
|
Loading…
Reference in a new issue