Internal change.

PiperOrigin-RevId: 335385162
This commit is contained in:
David Marn 2020-10-05 03:54:01 -07:00 committed by A. Unique TensorFlower
parent 9a56402c0d
commit ab1090717c

View file

@ -20,6 +20,7 @@ This is using a toy model based on classifying four spacial clusters of data.
import os
import tempfile
from absl import app
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
@ -117,6 +118,7 @@ def crossentropy(true_labels, predictions):
keras.backend.variable(predictions)))
def main(unused_argv):
epoch_results = []
num_epochs = 2
@ -130,8 +132,8 @@ for model_name in models:
models[model_name].fit(
training_features,
to_categorical(training_labels, num_clusters),
validation_data=(test_features, to_categorical(test_labels,
num_clusters)),
validation_data=(test_features,
to_categorical(test_labels, num_clusters)),
batch_size=64,
epochs=num_epochs,
shuffle=True)
@ -141,8 +143,8 @@ for model_name in models:
# Add metadata to generate a privacy report.
privacy_report_metadata = PrivacyReportMetadata(
accuracy_train=metrics.accuracy_score(training_labels,
np.argmax(training_pred, axis=1)),
accuracy_train=metrics.accuracy_score(
training_labels, np.argmax(training_pred, axis=1)),
accuracy_test=metrics.accuracy_score(test_labels,
np.argmax(test_pred, axis=1)),
epoch_num=num_epochs * i,
@ -175,6 +177,7 @@ with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "results.pickle")
attack_results.save(filepath)
loaded_results = AttackResults.load(filepath)
print(loaded_results.summary(by_slices=False))
# Print attack metrics
for attack_result in attack_results.single_attack_results:
@ -189,7 +192,8 @@ max_auc_attacker = attack_results.get_result_with_max_auc()
print("Attack type with max AUC: %s, AUC of %.2f" %
(max_auc_attacker.attack_type, max_auc_attacker.roc_curve.get_auc()))
max_advantage_attacker = attack_results.get_result_with_max_attacker_advantage()
max_advantage_attacker = attack_results.get_result_with_max_attacker_advantage(
)
print("Attack type with max advantage: %s, Attacker advantage of %.2f" %
(max_advantage_attacker.attack_type,
max_advantage_attacker.roc_curve.get_attacker_advantage()))
@ -209,7 +213,11 @@ print(attack_results.calculate_pd_dataframe())
# Example of ROC curve plotting.
figure = plotting.plot_roc_curve(
attack_results.single_attack_results[0].roc_curve)
figure.show()
plt.show()
# For saving a figure into a file:
# plotting.save_plot(figure, <file_path>)
if __name__ == "__main__":
app.run(main)