diff --git a/tutorials/mnist_dpsgd_tutorial.py b/tutorials/mnist_dpsgd_tutorial.py index f140854..7ae12c1 100644 --- a/tutorials/mnist_dpsgd_tutorial.py +++ b/tutorials/mnist_dpsgd_tutorial.py @@ -170,7 +170,7 @@ def load_mnist(): def main(unused_argv): tf.logging.set_verbosity(tf.logging.INFO) - if FLAGS.batch_size % FLAGS.microbatches != 0: + if FLAGS.dpsgd and FLAGS.batch_size % FLAGS.microbatches != 0: raise ValueError('Number of microbatches should divide evenly batch_size') # Load training and test data. diff --git a/tutorials/mnist_dpsgd_tutorial_keras.py b/tutorials/mnist_dpsgd_tutorial_keras.py index e044908..8c0a0fd 100644 --- a/tutorials/mnist_dpsgd_tutorial_keras.py +++ b/tutorials/mnist_dpsgd_tutorial_keras.py @@ -46,6 +46,20 @@ tf.flags.DEFINE_string('model_dir', None, 'Model directory') FLAGS = tf.flags.FLAGS +def compute_epsilon(steps): + """Computes epsilon value for given hyperparameters.""" + if FLAGS.noise_multiplier == 0.0: + return float('inf') + orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64)) + sampling_probability = FLAGS.batch_size / 60000 + rdp = compute_rdp(q=sampling_probability, + noise_multiplier=FLAGS.noise_multiplier, + steps=steps, + orders=orders) + # Delta is set to 1e-5 because MNIST has 60000 training points. + return get_privacy_spent(orders, rdp, target_delta=1e-5)[0] + + def load_mnist(): """Loads MNIST and preprocesses to combine training and validation data.""" train, test = tf.keras.datasets.mnist.load_data() @@ -74,7 +88,7 @@ def load_mnist(): def main(unused_argv): tf.logging.set_verbosity(tf.logging.INFO) - if FLAGS.batch_size % FLAGS.microbatches != 0: + if FLAGS.dpsgd and FLAGS.batch_size % FLAGS.microbatches != 0: raise ValueError('Number of microbatches should divide evenly batch_size') # Load training and test data. @@ -125,17 +139,11 @@ def main(unused_argv): batch_size=FLAGS.batch_size) # Compute the privacy budget expended. - if FLAGS.noise_multiplier == 0.0: + if FLAGS.dpsgd: + eps = compute_epsilon(FLAGS.epochs * 60000 // FLAGS.batch_size) + print('For delta=1e-5, the current epsilon is: %.2f' % eps) + else: print('Trained with vanilla non-private SGD optimizer') - orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64)) - sampling_probability = FLAGS.batch_size / 60000 - rdp = compute_rdp(q=sampling_probability, - noise_multiplier=FLAGS.noise_multiplier, - steps=(FLAGS.epochs * 60000 // FLAGS.batch_size), - orders=orders) - # Delta is set to 1e-5 because MNIST has 60000 training points. - eps = get_privacy_spent(orders, rdp, target_delta=1e-5)[0] - print('For delta=1e-5, the current epsilon is: %.2f' % eps) if __name__ == '__main__': tf.app.run()