Remove dependence on six and use super() in rdp_privacy_accountant

PiperOrigin-RevId: 434668652
This commit is contained in:
A. Unique TensorFlower 2022-03-14 23:24:06 -07:00
parent 42df23eb79
commit adde2064dd
3 changed files with 167 additions and 3 deletions

View file

@ -24,6 +24,10 @@ class NeighboringRelation(enum.Enum):
ADD_OR_REMOVE_ONE = 1 ADD_OR_REMOVE_ONE = 1
REPLACE_ONE = 2 REPLACE_ONE = 2
# A record is replaced with a special record, such as the "zero record". See
# https://arxiv.org/pdf/2103.00039.pdf, Definition 1.1.
REPLACE_SPECIAL = 3
class UnsupportedEventError(Exception): class UnsupportedEventError(Exception):
"""Exception to raise if _compose is called on unsupported event type.""" """Exception to raise if _compose is called on unsupported event type."""
@ -91,7 +95,7 @@ class PrivacyAccountant(metaclass=abc.ABCMeta):
raise TypeError(f'`event` must be `DpEvent`. Found {type(event)}.') raise TypeError(f'`event` must be `DpEvent`. Found {type(event)}.')
if not self.supports(event): if not self.supports(event):
raise UnsupportedEventError('Unsupported event: {event}.') raise UnsupportedEventError(f'Unsupported event: {event}.')
self._ledger.compose(event, count) self._ledger.compose(event, count)
self._compose(event, count) self._compose(event, count)

View file

@ -15,7 +15,7 @@
"""Privacy accountant that uses Renyi differential privacy.""" """Privacy accountant that uses Renyi differential privacy."""
import math import math
from typing import Collection, Optional from typing import Collection, Optional, Union
import numpy as np import numpy as np
from scipy import special from scipy import special
@ -519,6 +519,49 @@ def _effective_gaussian_noise_multiplier(event: dp_event.DpEvent):
return None return None
def _compute_rdp_single_epoch_tree_aggregation(
noise_multiplier: float, step_counts: Union[int, Collection[int]],
orders: Collection[float]) -> Union[float, np.ndarray]:
"""Computes RDP of the Tree Aggregation Protocol for Gaussian Mechanism.
This function implements the accounting when the tree is periodically
restarted and no record occurs twice across all trees. See appendix D of
"Practical and Private (Deep) Learning without Sampling or Shuffling"
https://arxiv.org/abs/2103.00039.
Args:
noise_multiplier: A non-negative float representing the ratio of the
standard deviation of the Gaussian noise to the l2-sensitivity of the
function to which it is added.
step_counts: A scalar or a list of non-negative integers representing the
number of steps per epoch (between two restarts).
orders: An array of RDP orders.
Returns:
The RDPs at all orders. Can be `np.inf`.
"""
if noise_multiplier < 0:
raise ValueError(
f'noise_multiplier must be non-negative. Got {noise_multiplier}.')
if noise_multiplier == 0:
return np.inf
if not step_counts:
raise ValueError(
'steps_list must be a non-empty list, or a non-zero scalar. Got '
f'{step_counts}.')
if np.isscalar(step_counts):
step_counts = [step_counts]
for steps in step_counts:
if steps < 0:
raise ValueError(f'Steps must be non-negative. Got {step_counts}')
max_depth = max(math.ceil(math.log2(steps + 1)) for steps in step_counts)
return np.array([a * max_depth / (2 * noise_multiplier**2) for a in orders])
class RdpAccountant(privacy_accountant.PrivacyAccountant): class RdpAccountant(privacy_accountant.PrivacyAccountant):
"""Privacy accountant that uses Renyi differential privacy.""" """Privacy accountant that uses Renyi differential privacy."""
@ -603,6 +646,13 @@ class RdpAccountant(privacy_accountant.PrivacyAccountant):
noise_multiplier=gaussian_noise_multiplier, noise_multiplier=gaussian_noise_multiplier,
orders=self._orders) orders=self._orders)
return True return True
elif isinstance(event, dp_event.SingleEpochTreeAggregationDpEvent):
if self._neighboring_relation is not NeighborRel.REPLACE_SPECIAL:
return False
if do_compose:
self._rdp += count * _compute_rdp_single_epoch_tree_aggregation(
event.noise_multiplier, event.step_counts, self._orders)
return True
else: else:
# Unsupported event (including `UnsupportedDpEvent`). # Unsupported event (including `UnsupportedDpEvent`).
return False return False

View file

@ -59,6 +59,26 @@ def _compute_a_mp(sigma, q, alpha):
return a_alpha return a_alpha
def _compose_trees(noise_multiplier, step_counts, orders):
accountant = rdp_privacy_accountant.RdpAccountant(
orders, privacy_accountant.NeighboringRelation.REPLACE_SPECIAL)
accountant.compose(
dp_event.ComposedDpEvent([
dp_event.SingleEpochTreeAggregationDpEvent(noise_multiplier,
step_count)
for step_count in step_counts
]))
return accountant
def _compose_trees_single_epoch(noise_multiplier, step_counts, orders):
accountant = rdp_privacy_accountant.RdpAccountant(
orders, privacy_accountant.NeighboringRelation.REPLACE_SPECIAL)
accountant.compose(
dp_event.SingleEpochTreeAggregationDpEvent(noise_multiplier, step_counts))
return accountant
class RdpPrivacyAccountantTest(privacy_accountant_test.PrivacyAccountantTest, class RdpPrivacyAccountantTest(privacy_accountant_test.PrivacyAccountantTest,
parameterized.TestCase): parameterized.TestCase):
@ -67,7 +87,9 @@ class RdpPrivacyAccountantTest(privacy_accountant_test.PrivacyAccountantTest,
rdp_privacy_accountant.RdpAccountant( rdp_privacy_accountant.RdpAccountant(
[2.0], privacy_accountant.NeighboringRelation.ADD_OR_REMOVE_ONE), [2.0], privacy_accountant.NeighboringRelation.ADD_OR_REMOVE_ONE),
rdp_privacy_accountant.RdpAccountant( rdp_privacy_accountant.RdpAccountant(
[2.0], privacy_accountant.NeighboringRelation.REPLACE_ONE) [2.0], privacy_accountant.NeighboringRelation.REPLACE_ONE),
rdp_privacy_accountant.RdpAccountant(
[2.0], privacy_accountant.NeighboringRelation.REPLACE_SPECIAL)
] ]
def test_supports(self): def test_supports(self):
@ -350,6 +372,94 @@ class RdpPrivacyAccountantTest(privacy_accountant_test.PrivacyAccountantTest,
else: else:
self.assertAlmostEqual(delta, delta2) self.assertAlmostEqual(delta, delta2)
@parameterized.named_parameters(
('add_remove', privacy_accountant.NeighboringRelation.ADD_OR_REMOVE_ONE),
('replace', privacy_accountant.NeighboringRelation.REPLACE_ONE))
def test_tree_wrong_neighbor_rel(self, neighboring_relation):
event = dp_event.SingleEpochTreeAggregationDpEvent(1.0, 1)
accountant = rdp_privacy_accountant.RdpAccountant(
neighboring_relation=neighboring_relation)
self.assertFalse(accountant.supports(event))
@parameterized.named_parameters(('eps20', 1.13, 19.74), ('eps2', 8.83, 2.04))
def test_compute_eps_tree(self, noise_multiplier, eps):
orders = [1 + x / 10 for x in range(1, 100)] + list(range(12, 64))
# This test is based on the StackOverflow setting in "Practical and
# Private (Deep) Learning without Sampling or Shuffling". The calculated
# epsilon could be better as the method in this package keeps improving.
step_counts, target_delta = 1600, 1e-6
new_eps = _compose_trees_single_epoch(noise_multiplier, step_counts,
orders).get_epsilon(target_delta)
self.assertLess(new_eps, eps)
@parameterized.named_parameters(
('restart4', [400] * 4),
('restart2', [800] * 2),
('adaptive', [10, 400, 400, 400, 390]),
)
def test_compose_tree_rdp(self, step_counts):
noise_multiplier, orders = 0.1, [1]
def get_rdp(step_count):
return _compose_trees_single_epoch(noise_multiplier, [step_count],
orders)._rdp[0]
rdp_summed = sum(get_rdp(step_count) for step_count in step_counts)
rdp_composed = _compose_trees(noise_multiplier, step_counts, orders)._rdp[0]
self.assertTrue(np.allclose(rdp_composed, rdp_summed, rtol=1e-12))
def test_single_epoch_multi_tree_rdp(self):
noise_multiplier, orders = 0.1, [1]
step_counts = [10, 40, 30, 20]
single_rdp = _compose_trees_single_epoch(noise_multiplier, step_counts,
orders)._rdp[0]
max_rdp = max(
_compose_trees_single_epoch(noise_multiplier, step_count,
orders)._rdp[0]
for step_count in step_counts)
self.assertEqual(single_rdp, max_rdp)
@parameterized.named_parameters(
('restart4', [400] * 4),
('restart2', [800] * 2),
('adaptive', [10, 400, 400, 400, 390]),
)
def test_compute_eps_tree_decreasing(self, step_counts):
# Test privacy epsilon decreases with noise multiplier increasing when
# keeping other parameters the same.
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
target_delta = 1e-6
prev_eps = np.inf
for noise_multiplier in [0.1 * x for x in range(1, 100, 5)]:
accountant = _compose_trees(noise_multiplier, step_counts, orders)
eps = accountant.get_epsilon(target_delta=target_delta)
self.assertLess(eps, prev_eps)
prev_eps = eps
@parameterized.named_parameters(
('negative_noise', -1, [3]),
('negative_steps', 1, [-3]),
)
def test_compute_rdp_tree_restart_raise(self, noise_multiplier, step_counts):
with self.assertRaisesRegex(ValueError, 'non-negative'):
_compose_trees(noise_multiplier, step_counts, orders=[1])
@parameterized.named_parameters(
('t100n0.1', 100, 0.1),
('t1000n0.01', 1000, 0.01),
)
def test_no_tree_no_sampling(self, total_steps, noise_multiplier):
orders = [1 + x / 10 for x in range(1, 100)] + list(range(12, 64))
tree_rdp = _compose_trees(noise_multiplier, [1] * total_steps, orders)._rdp
accountant = rdp_privacy_accountant.RdpAccountant(orders)
event = dp_event.SelfComposedDpEvent(
dp_event.GaussianDpEvent(noise_multiplier), total_steps)
accountant.compose(event)
base_rdp = accountant._rdp
self.assertTrue(np.allclose(tree_rdp, base_rdp, rtol=1e-12))
if __name__ == '__main__': if __name__ == '__main__':
absltest.main() absltest.main()