Update TFPs dp_accounting dependency.

PiperOrigin-RevId: 458307242
This commit is contained in:
Michael Reneer 2022-06-30 13:57:12 -07:00 committed by A. Unique TensorFlower
parent 22b92a61ca
commit b16a0abf1c
24 changed files with 109 additions and 158 deletions

View file

@ -13,10 +13,7 @@ py_library(
name = "compute_dp_sgd_privacy_lib", name = "compute_dp_sgd_privacy_lib",
srcs = ["compute_dp_sgd_privacy_lib.py"], srcs = ["compute_dp_sgd_privacy_lib.py"],
srcs_version = "PY3", srcs_version = "PY3",
deps = [ deps = ["@com_google_differential_py//python/dp_accounting"],
"@com_google_differential_py//python/dp_accounting:dp_event",
"@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant",
],
) )
py_binary( py_binary(
@ -45,10 +42,7 @@ py_binary(
py_library( py_library(
name = "compute_noise_from_budget_lib", name = "compute_noise_from_budget_lib",
srcs = ["compute_noise_from_budget_lib.py"], srcs = ["compute_noise_from_budget_lib.py"],
deps = [ deps = ["@com_google_differential_py//python/dp_accounting"],
"@com_google_differential_py//python/dp_accounting:dp_event",
"@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant",
],
) )
py_test( py_test(
@ -67,11 +61,7 @@ py_library(
srcs = ["rdp_accountant.py"], srcs = ["rdp_accountant.py"],
srcs_version = "PY3", srcs_version = "PY3",
visibility = ["//visibility:public"], visibility = ["//visibility:public"],
deps = [ deps = ["@com_google_differential_py//python/dp_accounting"],
"@com_google_differential_py//python/dp_accounting:dp_event",
"@com_google_differential_py//python/dp_accounting:privacy_accountant",
"@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant",
],
) )
py_test( py_test(
@ -119,9 +109,7 @@ py_test(
python_version = "PY3", python_version = "PY3",
srcs_version = "PY3", srcs_version = "PY3",
deps = [ deps = [
":rdp_accountant",
":tree_aggregation_accountant", ":tree_aggregation_accountant",
"@com_google_differential_py//python/dp_accounting:dp_event", "@com_google_differential_py//python/dp_accounting",
"@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant",
], ],
) )

View file

@ -17,18 +17,18 @@
import math import math
from absl import app from absl import app
from com_google_differential_py.python.dp_accounting
from com_google_differential_py.python.dp_accounting import dp_event
from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant
def apply_dp_sgd_analysis(q, sigma, steps, orders, delta): def apply_dp_sgd_analysis(q, sigma, steps, orders, delta):
"""Compute and print results of DP-SGD analysis.""" """Compute and print results of DP-SGD analysis."""
accountant = rdp_privacy_accountant.RdpAccountant(orders) accountant = dp_accounting.rdp.RdpAccountant(orders)
event = dp_event.SelfComposedDpEvent( event = dp_accounting.SelfComposedDpEvent(
dp_event.PoissonSampledDpEvent(q, dp_event.GaussianDpEvent(sigma)), steps) dp_accounting.PoissonSampledDpEvent(q,
dp_accounting.GaussianDpEvent(sigma)),
steps)
accountant.compose(event) accountant.compose(event)

View file

@ -17,18 +17,18 @@
import math import math
from absl import app from absl import app
from com_google_differential_py.python.dp_accounting
from scipy import optimize from scipy import optimize
from com_google_differential_py.python.dp_accounting import dp_event
from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant
def apply_dp_sgd_analysis(q, sigma, steps, orders, delta): def apply_dp_sgd_analysis(q, sigma, steps, orders, delta):
"""Compute and print results of DP-SGD analysis.""" """Compute and print results of DP-SGD analysis."""
accountant = rdp_privacy_accountant.RdpAccountant(orders) accountant = dp_accounting.rdp.RdpAccountant(orders)
event = dp_event.SelfComposedDpEvent( event = dp_accounting.SelfComposedDpEvent(
dp_event.PoissonSampledDpEvent(q, dp_event.GaussianDpEvent(sigma)), steps) dp_accounting.PoissonSampledDpEvent(q,
dp_accounting.GaussianDpEvent(sigma)),
steps)
accountant.compose(event) accountant.compose(event)
return accountant.get_epsilon_and_optimal_order(delta) return accountant.get_epsilon_and_optimal_order(delta)

View file

@ -41,12 +41,9 @@ The example code would be:
eps, _, opt_order = rdp_accountant.get_privacy_spent(rdp, target_delta=delta) eps, _, opt_order = rdp_accountant.get_privacy_spent(rdp, target_delta=delta)
""" """
from com_google_differential_py.python.dp_accounting
import numpy as np import numpy as np
from com_google_differential_py.python.dp_accounting import dp_event
from com_google_differential_py.python.dp_accounting import privacy_accountant
from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant
def _compute_rdp_from_event(orders, event, count): def _compute_rdp_from_event(orders, event, count):
"""Computes RDP from a DpEvent using RdpAccountant. """Computes RDP from a DpEvent using RdpAccountant.
@ -61,15 +58,14 @@ def _compute_rdp_from_event(orders, event, count):
""" """
orders_vec = np.atleast_1d(orders) orders_vec = np.atleast_1d(orders)
if isinstance(event, dp_event.SampledWithoutReplacementDpEvent): if isinstance(event, dp_accounting.SampledWithoutReplacementDpEvent):
neighboring_relation = privacy_accountant.NeighboringRelation.REPLACE_ONE neighboring_relation = dp_accounting.NeighboringRelation.REPLACE_ONE
elif isinstance(event, dp_event.SingleEpochTreeAggregationDpEvent): elif isinstance(event, dp_accounting.SingleEpochTreeAggregationDpEvent):
neighboring_relation = privacy_accountant.NeighboringRelation.REPLACE_SPECIAL neighboring_relation = dp_accounting.NeighboringRelation.REPLACE_SPECIAL
else: else:
neighboring_relation = privacy_accountant.NeighboringRelation.ADD_OR_REMOVE_ONE neighboring_relation = dp_accounting.NeighboringRelation.ADD_OR_REMOVE_ONE
accountant = rdp_privacy_accountant.RdpAccountant(orders_vec, accountant = dp_accounting.rdp.RdpAccountant(orders_vec, neighboring_relation)
neighboring_relation)
accountant.compose(event, count) accountant.compose(event, count)
rdp = accountant._rdp # pylint: disable=protected-access rdp = accountant._rdp # pylint: disable=protected-access
@ -96,8 +92,8 @@ def compute_rdp(q, noise_multiplier, steps, orders):
Returns: Returns:
The RDPs at all orders. Can be `np.inf`. The RDPs at all orders. Can be `np.inf`.
""" """
event = dp_event.PoissonSampledDpEvent( event = dp_accounting.PoissonSampledDpEvent(
q, dp_event.GaussianDpEvent(noise_multiplier)) q, dp_accounting.GaussianDpEvent(noise_multiplier))
return _compute_rdp_from_event(orders, event, steps) return _compute_rdp_from_event(orders, event, steps)
@ -129,8 +125,8 @@ def compute_rdp_sample_without_replacement(q, noise_multiplier, steps, orders):
Returns: Returns:
The RDPs at all orders, can be np.inf. The RDPs at all orders, can be np.inf.
""" """
event = dp_event.SampledWithoutReplacementDpEvent( event = dp_accounting.SampledWithoutReplacementDpEvent(
1, q, dp_event.GaussianDpEvent(noise_multiplier)) 1, q, dp_accounting.GaussianDpEvent(noise_multiplier))
return _compute_rdp_from_event(orders, event, steps) return _compute_rdp_from_event(orders, event, steps)
@ -195,7 +191,7 @@ def get_privacy_spent(orders, rdp, target_eps=None, target_delta=None):
raise ValueError( raise ValueError(
"Exactly one out of eps and delta must be None. (None is).") "Exactly one out of eps and delta must be None. (None is).")
accountant = rdp_privacy_accountant.RdpAccountant(orders) accountant = dp_accounting.rdp.RdpAccountant(orders)
accountant._rdp = rdp # pylint: disable=protected-access accountant._rdp = rdp # pylint: disable=protected-access
if target_eps is not None: if target_eps is not None:

View file

@ -14,13 +14,10 @@
# ============================================================================== # ==============================================================================
from absl.testing import parameterized from absl.testing import parameterized
from com_google_differential_py.python.dp_accounting
import tensorflow as tf import tensorflow as tf
from tensorflow_privacy.privacy.analysis import tree_aggregation_accountant from tensorflow_privacy.privacy.analysis import tree_aggregation_accountant
from com_google_differential_py.python.dp_accounting import dp_event
from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant
class TreeAggregationTest(tf.test.TestCase, parameterized.TestCase): class TreeAggregationTest(tf.test.TestCase, parameterized.TestCase):
@ -33,8 +30,7 @@ class TreeAggregationTest(tf.test.TestCase, parameterized.TestCase):
steps_list, target_delta = 1600, 1e-6 steps_list, target_delta = 1600, 1e-6
rdp = tree_aggregation_accountant.compute_rdp_tree_restart( rdp = tree_aggregation_accountant.compute_rdp_tree_restart(
noise_multiplier, steps_list, orders) noise_multiplier, steps_list, orders)
new_eps = rdp_privacy_accountant.compute_epsilon(orders, rdp, new_eps = dp_accounting.rdp.compute_epsilon(orders, rdp, target_delta)[0]
target_delta)[0]
self.assertLess(new_eps, eps) self.assertLess(new_eps, eps)
@parameterized.named_parameters( @parameterized.named_parameters(
@ -67,7 +63,7 @@ class TreeAggregationTest(tf.test.TestCase, parameterized.TestCase):
for noise_multiplier in [0.1 * x for x in range(1, 100, 5)]: for noise_multiplier in [0.1 * x for x in range(1, 100, 5)]:
rdp = tree_aggregation_accountant.compute_rdp_tree_restart( rdp = tree_aggregation_accountant.compute_rdp_tree_restart(
noise_multiplier, steps_list, orders) noise_multiplier, steps_list, orders)
eps = rdp_privacy_accountant.compute_epsilon(orders, rdp, target_delta)[0] eps = dp_accounting.rdp.compute_epsilon(orders, rdp, target_delta)[0]
self.assertLess(eps, prev_eps) self.assertLess(eps, prev_eps)
prev_eps = eps prev_eps = eps
@ -90,8 +86,9 @@ class TreeAggregationTest(tf.test.TestCase, parameterized.TestCase):
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64)) orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
tree_rdp = tree_aggregation_accountant.compute_rdp_tree_restart( tree_rdp = tree_aggregation_accountant.compute_rdp_tree_restart(
noise_multiplier, [1] * total_steps, orders) noise_multiplier, [1] * total_steps, orders)
accountant = rdp_privacy_accountant.RdpAccountant(orders) accountant = dp_accounting.rdp.RdpAccountant(orders)
accountant.compose(dp_event.GaussianDpEvent(noise_multiplier), total_steps) accountant.compose(
dp_accounting.GaussianDpEvent(noise_multiplier), total_steps)
rdp = accountant._rdp # pylint: disable=protected-access rdp = accountant._rdp # pylint: disable=protected-access
self.assertAllClose(tree_rdp, rdp, rtol=1e-12) self.assertAllClose(tree_rdp, rdp, rtol=1e-12)

View file

@ -36,7 +36,7 @@ py_library(
deps = [ deps = [
":discrete_gaussian_utils", ":discrete_gaussian_utils",
":dp_query", ":dp_query",
"@com_google_differential_py//python/dp_accounting:dp_event", "@com_google_differential_py//python/dp_accounting",
], ],
) )
@ -59,7 +59,7 @@ py_library(
deps = [ deps = [
":discrete_gaussian_utils", ":discrete_gaussian_utils",
":dp_query", ":dp_query",
"@com_google_differential_py//python/dp_accounting:dp_event", "@com_google_differential_py//python/dp_accounting",
], ],
) )
@ -82,7 +82,7 @@ py_library(
deps = [ deps = [
":dp_query", ":dp_query",
":normalized_query", ":normalized_query",
"@com_google_differential_py//python/dp_accounting:dp_event", "@com_google_differential_py//python/dp_accounting",
], ],
) )
@ -103,7 +103,7 @@ py_library(
srcs_version = "PY3", srcs_version = "PY3",
deps = [ deps = [
":dp_query", ":dp_query",
"@com_google_differential_py//python/dp_accounting:dp_event", "@com_google_differential_py//python/dp_accounting",
], ],
) )
@ -125,7 +125,7 @@ py_library(
srcs_version = "PY3", srcs_version = "PY3",
deps = [ deps = [
":dp_query", ":dp_query",
"@com_google_differential_py//python/dp_accounting:dp_event", "@com_google_differential_py//python/dp_accounting",
], ],
) )
@ -167,7 +167,7 @@ py_library(
srcs_version = "PY3", srcs_version = "PY3",
deps = [ deps = [
":dp_query", ":dp_query",
"@com_google_differential_py//python/dp_accounting:dp_event", "@com_google_differential_py//python/dp_accounting",
], ],
) )
@ -194,7 +194,7 @@ py_library(
":dp_query", ":dp_query",
":gaussian_query", ":gaussian_query",
":quantile_estimator_query", ":quantile_estimator_query",
"@com_google_differential_py//python/dp_accounting:dp_event", "@com_google_differential_py//python/dp_accounting",
], ],
) )
@ -274,7 +274,7 @@ py_library(
deps = [ deps = [
":dp_query", ":dp_query",
":tree_aggregation", ":tree_aggregation",
"@com_google_differential_py//python/dp_accounting:dp_event", "@com_google_differential_py//python/dp_accounting",
], ],
) )
@ -286,7 +286,7 @@ py_library(
":distributed_discrete_gaussian_query", ":distributed_discrete_gaussian_query",
":dp_query", ":dp_query",
":gaussian_query", ":gaussian_query",
"@com_google_differential_py//python/dp_accounting:dp_event", "@com_google_differential_py//python/dp_accounting",
], ],
) )

View file

@ -15,12 +15,11 @@
import collections import collections
from com_google_differential_py.python.dp_accounting
import tensorflow as tf import tensorflow as tf
from tensorflow_privacy.privacy.dp_query import discrete_gaussian_utils from tensorflow_privacy.privacy.dp_query import discrete_gaussian_utils
from tensorflow_privacy.privacy.dp_query import dp_query from tensorflow_privacy.privacy.dp_query import dp_query
from com_google_differential_py.python.dp_accounting import dp_event
class DiscreteGaussianSumQuery(dp_query.SumAggregationDPQuery): class DiscreteGaussianSumQuery(dp_query.SumAggregationDPQuery):
"""Implements DPQuery for discrete Gaussian sum queries. """Implements DPQuery for discrete Gaussian sum queries.
@ -84,5 +83,5 @@ class DiscreteGaussianSumQuery(dp_query.SumAggregationDPQuery):
return tf.ensure_shape(noised_v, v.shape) return tf.ensure_shape(noised_v, v.shape)
result = tf.nest.map_structure(add_noise, sample_state) result = tf.nest.map_structure(add_noise, sample_state)
event = dp_event.UnsupportedDpEvent() event = dp_accounting.UnsupportedDpEvent()
return result, global_state, event return result, global_state, event

View file

@ -15,12 +15,11 @@
import collections import collections
from com_google_differential_py.python.dp_accounting
import tensorflow as tf import tensorflow as tf
from tensorflow_privacy.privacy.dp_query import discrete_gaussian_utils from tensorflow_privacy.privacy.dp_query import discrete_gaussian_utils
from tensorflow_privacy.privacy.dp_query import dp_query from tensorflow_privacy.privacy.dp_query import dp_query
from com_google_differential_py.python.dp_accounting import dp_event
class DistributedDiscreteGaussianSumQuery(dp_query.SumAggregationDPQuery): class DistributedDiscreteGaussianSumQuery(dp_query.SumAggregationDPQuery):
"""Implements DPQuery for discrete distributed Gaussian sum queries. """Implements DPQuery for discrete distributed Gaussian sum queries.
@ -108,5 +107,5 @@ class DistributedDiscreteGaussianSumQuery(dp_query.SumAggregationDPQuery):
def get_noised_result(self, sample_state, global_state): def get_noised_result(self, sample_state, global_state):
# Note that by directly returning the aggregate, this assumes that there # Note that by directly returning the aggregate, this assumes that there
# will not be missing local noise shares during execution. # will not be missing local noise shares during execution.
event = dp_event.UnsupportedDpEvent() event = dp_accounting.UnsupportedDpEvent()
return sample_state, global_state, event return sample_state, global_state, event

View file

@ -15,12 +15,11 @@
import collections import collections
from com_google_differential_py.python.dp_accounting
import tensorflow as tf import tensorflow as tf
from tensorflow_privacy.privacy.dp_query import dp_query from tensorflow_privacy.privacy.dp_query import dp_query
from tensorflow_privacy.privacy.dp_query import normalized_query from tensorflow_privacy.privacy.dp_query import normalized_query
from com_google_differential_py.python.dp_accounting import dp_event
class DistributedSkellamSumQuery(dp_query.SumAggregationDPQuery): class DistributedSkellamSumQuery(dp_query.SumAggregationDPQuery):
"""Implements DPQuery interface for discrete distributed sum queries. """Implements DPQuery interface for discrete distributed sum queries.
@ -127,7 +126,7 @@ class DistributedSkellamSumQuery(dp_query.SumAggregationDPQuery):
def get_noised_result(self, sample_state, global_state): def get_noised_result(self, sample_state, global_state):
"""The noise was already added locally, therefore just continue.""" """The noise was already added locally, therefore just continue."""
event = dp_event.UnsupportedDpEvent() event = dp_accounting.UnsupportedDpEvent()
return sample_state, global_state, event return sample_state, global_state, event

View file

@ -16,11 +16,10 @@
import collections import collections
import distutils import distutils
from com_google_differential_py.python.dp_accounting
import tensorflow as tf import tensorflow as tf
from tensorflow_privacy.privacy.dp_query import dp_query from tensorflow_privacy.privacy.dp_query import dp_query
from com_google_differential_py.python.dp_accounting import dp_event
class GaussianSumQuery(dp_query.SumAggregationDPQuery): class GaussianSumQuery(dp_query.SumAggregationDPQuery):
"""Implements DPQuery interface for Gaussian sum queries. """Implements DPQuery interface for Gaussian sum queries.
@ -94,6 +93,6 @@ class GaussianSumQuery(dp_query.SumAggregationDPQuery):
result = tf.nest.map_structure(add_noise, sample_state) result = tf.nest.map_structure(add_noise, sample_state)
noise_multiplier = global_state.stddev / global_state.l2_norm_clip noise_multiplier = global_state.stddev / global_state.l2_norm_clip
event = dp_event.GaussianDpEvent(noise_multiplier) event = dp_accounting.GaussianDpEvent(noise_multiplier)
return result, global_state, event return result, global_state, event

View file

@ -15,12 +15,11 @@
import collections import collections
from com_google_differential_py.python.dp_accounting
import tensorflow as tf import tensorflow as tf
from tensorflow_privacy.privacy.dp_query import dp_query from tensorflow_privacy.privacy.dp_query import dp_query
import tree import tree
from com_google_differential_py.python.dp_accounting import dp_event
class NestedQuery(dp_query.DPQuery): class NestedQuery(dp_query.DPQuery):
"""Implements DPQuery interface for structured queries. """Implements DPQuery interface for structured queries.
@ -102,7 +101,7 @@ class NestedQuery(dp_query.DPQuery):
return (tf.nest.pack_sequence_as(self._queries, flat_estimates), return (tf.nest.pack_sequence_as(self._queries, flat_estimates),
tf.nest.pack_sequence_as(self._queries, flat_new_global_states), tf.nest.pack_sequence_as(self._queries, flat_new_global_states),
dp_event.ComposedDpEvent(events=flat_events)) dp_accounting.ComposedDpEvent(events=flat_events))
def derive_metrics(self, global_state): def derive_metrics(self, global_state):
"""Implements `tensorflow_privacy.DPQuery.derive_metrics`.""" """Implements `tensorflow_privacy.DPQuery.derive_metrics`."""

View file

@ -13,11 +13,10 @@
# limitations under the License. # limitations under the License.
"""Implements DPQuery interface for no privacy average queries.""" """Implements DPQuery interface for no privacy average queries."""
from com_google_differential_py.python.dp_accounting
import tensorflow as tf import tensorflow as tf
from tensorflow_privacy.privacy.dp_query import dp_query from tensorflow_privacy.privacy.dp_query import dp_query
from com_google_differential_py.python.dp_accounting import dp_event
class NoPrivacySumQuery(dp_query.SumAggregationDPQuery): class NoPrivacySumQuery(dp_query.SumAggregationDPQuery):
"""Implements DPQuery interface for a sum query with no privacy. """Implements DPQuery interface for a sum query with no privacy.
@ -27,7 +26,7 @@ class NoPrivacySumQuery(dp_query.SumAggregationDPQuery):
def get_noised_result(self, sample_state, global_state): def get_noised_result(self, sample_state, global_state):
"""Implements `tensorflow_privacy.DPQuery.get_noised_result`.""" """Implements `tensorflow_privacy.DPQuery.get_noised_result`."""
return sample_state, global_state, dp_event.NonPrivateDpEvent() return sample_state, global_state, dp_accounting.NonPrivateDpEvent()
class NoPrivacyAverageQuery(dp_query.SumAggregationDPQuery): class NoPrivacyAverageQuery(dp_query.SumAggregationDPQuery):
@ -86,4 +85,4 @@ class NoPrivacyAverageQuery(dp_query.SumAggregationDPQuery):
sum_state, denominator = sample_state sum_state, denominator = sample_state
result = tf.nest.map_structure(lambda t: t / denominator, sum_state) result = tf.nest.map_structure(lambda t: t / denominator, sum_state)
return result, global_state, dp_event.NonPrivateDpEvent() return result, global_state, dp_accounting.NonPrivateDpEvent()

View file

@ -15,13 +15,12 @@
import collections import collections
from com_google_differential_py.python.dp_accounting
import tensorflow as tf import tensorflow as tf
from tensorflow_privacy.privacy.dp_query import dp_query from tensorflow_privacy.privacy.dp_query import dp_query
from tensorflow_privacy.privacy.dp_query import gaussian_query from tensorflow_privacy.privacy.dp_query import gaussian_query
from tensorflow_privacy.privacy.dp_query import quantile_estimator_query from tensorflow_privacy.privacy.dp_query import quantile_estimator_query
from com_google_differential_py.python.dp_accounting import dp_event
class QuantileAdaptiveClipSumQuery(dp_query.SumAggregationDPQuery): class QuantileAdaptiveClipSumQuery(dp_query.SumAggregationDPQuery):
"""`DPQuery` for Gaussian sum queries with adaptive clipping. """`DPQuery` for Gaussian sum queries with adaptive clipping.
@ -138,7 +137,7 @@ class QuantileAdaptiveClipSumQuery(dp_query.SumAggregationDPQuery):
new_sum_query_state, new_sum_query_state,
new_quantile_estimator_state) new_quantile_estimator_state)
event = dp_event.ComposedDpEvent(events=[sum_event, quantile_event]) event = dp_accounting.ComposedDpEvent(events=[sum_event, quantile_event])
return noised_vectors, new_global_state, event return noised_vectors, new_global_state, event
def derive_metrics(self, global_state): def derive_metrics(self, global_state):

View file

@ -34,11 +34,11 @@ corresponding epsilon for a `target_delta` and `noise_multiplier` to achieve
""" """
import attr import attr
from com_google_differential_py.python.dp_accounting
import tensorflow as tf import tensorflow as tf
from tensorflow_privacy.privacy.dp_query import dp_query from tensorflow_privacy.privacy.dp_query import dp_query
from tensorflow_privacy.privacy.dp_query import tree_aggregation from tensorflow_privacy.privacy.dp_query import tree_aggregation
from com_google_differential_py.python.dp_accounting import dp_event
# TODO(b/193679963): define `RestartQuery` and move `RestartIndicator` to be # TODO(b/193679963): define `RestartQuery` and move `RestartIndicator` to be
# in the same module. # in the same module.
@ -186,7 +186,7 @@ class TreeCumulativeSumQuery(dp_query.SumAggregationDPQuery):
global_state, global_state,
samples_cumulative_sum=new_cumulative_sum, samples_cumulative_sum=new_cumulative_sum,
tree_state=new_tree_state) tree_state=new_tree_state)
event = dp_event.UnsupportedDpEvent() event = dp_accounting.UnsupportedDpEvent()
return noised_cumulative_sum, new_global_state, event return noised_cumulative_sum, new_global_state, event
def reset_state(self, noised_results, global_state): def reset_state(self, noised_results, global_state):
@ -428,7 +428,7 @@ class TreeResidualSumQuery(dp_query.SumAggregationDPQuery):
global_state.previous_tree_noise) global_state.previous_tree_noise)
new_global_state = attr.evolve( new_global_state = attr.evolve(
global_state, previous_tree_noise=tree_noise, tree_state=new_tree_state) global_state, previous_tree_noise=tree_noise, tree_state=new_tree_state)
event = dp_event.UnsupportedDpEvent() event = dp_accounting.UnsupportedDpEvent()
return noised_sample, new_global_state, event return noised_sample, new_global_state, event
def reset_state(self, noised_results, global_state): def reset_state(self, noised_results, global_state):

View file

@ -21,13 +21,12 @@ import math
from typing import Optional from typing import Optional
import attr import attr
from com_google_differential_py.python.dp_accounting
import tensorflow as tf import tensorflow as tf
from tensorflow_privacy.privacy.dp_query import distributed_discrete_gaussian_query from tensorflow_privacy.privacy.dp_query import distributed_discrete_gaussian_query
from tensorflow_privacy.privacy.dp_query import dp_query from tensorflow_privacy.privacy.dp_query import dp_query
from tensorflow_privacy.privacy.dp_query import gaussian_query from tensorflow_privacy.privacy.dp_query import gaussian_query
from com_google_differential_py.python.dp_accounting import dp_event
def _build_tree_from_leaf(leaf_nodes: tf.Tensor, arity: int) -> tf.RaggedTensor: def _build_tree_from_leaf(leaf_nodes: tf.Tensor, arity: int) -> tf.RaggedTensor:
"""A function constructs a complete tree given all the leaf nodes. """A function constructs a complete tree given all the leaf nodes.
@ -204,7 +203,7 @@ class TreeRangeSumQuery(dp_query.SumAggregationDPQuery):
] ]
tree = tf.RaggedTensor.from_row_splits( tree = tf.RaggedTensor.from_row_splits(
values=sample_state, row_splits=row_splits) values=sample_state, row_splits=row_splits)
event = dp_event.UnsupportedDpEvent() event = dp_accounting.UnsupportedDpEvent()
return tree, new_global_state, event return tree, new_global_state, event
@classmethod @classmethod

View file

@ -12,9 +12,7 @@ py_library(
":datasets", ":datasets",
":single_layer_softmax", ":single_layer_softmax",
"//tensorflow_privacy/privacy/optimizers:dp_optimizer_keras", "//tensorflow_privacy/privacy/optimizers:dp_optimizer_keras",
"@com_google_differential_py//python/dp_accounting:dp_event", "@com_google_differential_py//python/dp_accounting",
"@com_google_differential_py//python/dp_accounting:mechanism_calibration",
"@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant",
], ],
) )

View file

@ -28,16 +28,13 @@ the algorithm of Abadi et al.: https://arxiv.org/pdf/1607.00133.pdf%20.
import math import math
from typing import List, Optional, Tuple from typing import List, Optional, Tuple
from com_google_differential_py.python.dp_accounting
import numpy as np import numpy as np
import tensorflow as tf import tensorflow as tf
from tensorflow_privacy.privacy.logistic_regression import datasets from tensorflow_privacy.privacy.logistic_regression import datasets
from tensorflow_privacy.privacy.logistic_regression import single_layer_softmax from tensorflow_privacy.privacy.logistic_regression import single_layer_softmax
from tensorflow_privacy.privacy.optimizers import dp_optimizer_keras from tensorflow_privacy.privacy.optimizers import dp_optimizer_keras
from com_google_differential_py.python.dp_accounting import dp_event
from com_google_differential_py.python.dp_accounting import mechanism_calibration
from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant
@tf.keras.utils.register_keras_serializable(package='Custom', name='Kifer') @tf.keras.utils.register_keras_serializable(package='Custom', name='Kifer')
class KiferRegularizer(tf.keras.regularizers.Regularizer): class KiferRegularizer(tf.keras.regularizers.Regularizer):
@ -176,17 +173,17 @@ def compute_dpsgd_noise_multiplier(num_train: int,
steps = int(math.ceil(epochs * num_train / batch_size)) steps = int(math.ceil(epochs * num_train / batch_size))
def make_event_from_param(noise_multiplier): def make_event_from_param(noise_multiplier):
return dp_event.SelfComposedDpEvent( return dp_accounting.SelfComposedDpEvent(
dp_event.PoissonSampledDpEvent( dp_accounting.PoissonSampledDpEvent(
sampling_probability=batch_size / num_train, sampling_probability=batch_size / num_train,
event=dp_event.GaussianDpEvent(noise_multiplier)), steps) event=dp_accounting.GaussianDpEvent(noise_multiplier)), steps)
return mechanism_calibration.calibrate_dp_mechanism( return dp_accounting.calibrate_dp_mechanism(
lambda: rdp_privacy_accountant.RdpAccountant(orders), lambda: dp_accounting.rdp.RdpAccountant(orders),
make_event_from_param, make_event_from_param,
epsilon, epsilon,
delta, delta,
mechanism_calibration.LowerEndpointAndGuess(0, 1), dp_accounting.LowerEndpointAndGuess(0, 1),
tol=tolerance) tol=tolerance)

View file

@ -27,8 +27,7 @@ py_binary(
srcs_version = "PY3", srcs_version = "PY3",
deps = [ deps = [
"//tensorflow_privacy/privacy/optimizers:dp_optimizer", "//tensorflow_privacy/privacy/optimizers:dp_optimizer",
"@com_google_differential_py//python/dp_accounting:dp_event", "@com_google_differential_py//python/dp_accounting",
"@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant",
], ],
) )
@ -39,8 +38,7 @@ py_binary(
srcs_version = "PY3", srcs_version = "PY3",
deps = [ deps = [
"//tensorflow_privacy/privacy/optimizers:dp_optimizer_keras", "//tensorflow_privacy/privacy/optimizers:dp_optimizer_keras",
"@com_google_differential_py//python/dp_accounting:dp_event", "@com_google_differential_py//python/dp_accounting",
"@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant",
], ],
) )
@ -51,8 +49,7 @@ py_binary(
srcs_version = "PY3", srcs_version = "PY3",
deps = [ deps = [
"//tensorflow_privacy/privacy/keras_models:dp_keras_model", "//tensorflow_privacy/privacy/keras_models:dp_keras_model",
"@com_google_differential_py//python/dp_accounting:dp_event", "@com_google_differential_py//python/dp_accounting",
"@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant",
], ],
) )
@ -63,8 +60,7 @@ py_binary(
srcs_version = "PY3", srcs_version = "PY3",
deps = [ deps = [
"//tensorflow_privacy/privacy/optimizers:dp_optimizer_vectorized", "//tensorflow_privacy/privacy/optimizers:dp_optimizer_vectorized",
"@com_google_differential_py//python/dp_accounting:dp_event", "@com_google_differential_py//python/dp_accounting",
"@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant",
], ],
) )
@ -87,8 +83,7 @@ py_binary(
srcs_version = "PY3", srcs_version = "PY3",
deps = [ deps = [
"//tensorflow_privacy/privacy/optimizers:dp_optimizer", "//tensorflow_privacy/privacy/optimizers:dp_optimizer",
"@com_google_differential_py//python/dp_accounting:dp_event", "@com_google_differential_py//python/dp_accounting",
"@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant",
], ],
) )
@ -99,8 +94,7 @@ py_binary(
srcs_version = "PY3", srcs_version = "PY3",
deps = [ deps = [
"//tensorflow_privacy/privacy/optimizers:dp_optimizer", "//tensorflow_privacy/privacy/optimizers:dp_optimizer",
"@com_google_differential_py//python/dp_accounting:dp_event", "@com_google_differential_py//python/dp_accounting",
"@com_google_differential_py//python/dp_accounting/rdp:rdp_privacy_accountant",
], ],
) )

View file

@ -35,15 +35,13 @@ import os
from absl import app from absl import app
from absl import flags from absl import flags
from absl import logging from absl import logging
from com_google_differential_py.python.dp_accounting
import numpy as np import numpy as np
import tensorflow as tf import tensorflow as tf
from tensorflow import estimator as tf_estimator from tensorflow import estimator as tf_estimator
from tensorflow.compat.v1 import estimator as tf_compat_v1_estimator from tensorflow.compat.v1 import estimator as tf_compat_v1_estimator
import tensorflow_datasets as tfds import tensorflow_datasets as tfds
from tensorflow_privacy.privacy.optimizers import dp_optimizer from tensorflow_privacy.privacy.optimizers import dp_optimizer
from com_google_differential_py.python.dp_accounting import dp_event
from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant
flags.DEFINE_boolean( flags.DEFINE_boolean(
@ -153,11 +151,11 @@ def compute_epsilon(steps):
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64)) orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
sampling_probability = FLAGS.batch_size / NB_TRAIN sampling_probability = FLAGS.batch_size / NB_TRAIN
accountant = rdp_privacy_accountant.RdpAccountant(orders) accountant = dp_accounting.rdp.RdpAccountant(orders)
event = dp_event.SelfComposedDpEvent( event = dp_accounting.SelfComposedDpEvent(
dp_event.PoissonSampledDpEvent( dp_accounting.PoissonSampledDpEvent(
sampling_probability, sampling_probability,
dp_event.GaussianDpEvent(FLAGS.noise_multiplier)), steps) dp_accounting.GaussianDpEvent(FLAGS.noise_multiplier)), steps)
accountant.compose(event) accountant.compose(event)
# Delta is set to 1e-5 because Penn TreeBank has 60000 training points. # Delta is set to 1e-5 because Penn TreeBank has 60000 training points.

View file

@ -15,14 +15,11 @@
from absl import app from absl import app
from absl import flags from absl import flags
from com_google_differential_py.python.dp_accounting
import numpy as np import numpy as np
import tensorflow as tf import tensorflow as tf
from tensorflow_privacy.privacy.optimizers.dp_optimizer import DPGradientDescentGaussianOptimizer from tensorflow_privacy.privacy.optimizers.dp_optimizer import DPGradientDescentGaussianOptimizer
from com_google_differential_py.python.dp_accounting import dp_event
from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant
GradientDescentOptimizer = tf.compat.v1.train.GradientDescentOptimizer GradientDescentOptimizer = tf.compat.v1.train.GradientDescentOptimizer
tf.compat.v1.enable_eager_execution() tf.compat.v1.enable_eager_execution()
@ -47,13 +44,13 @@ def compute_epsilon(steps):
if FLAGS.noise_multiplier == 0.0: if FLAGS.noise_multiplier == 0.0:
return float('inf') return float('inf')
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64)) orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
accountant = rdp_privacy_accountant.RdpAccountant(orders) accountant = dp_accounting.rdp.RdpAccountant(orders)
sampling_probability = FLAGS.batch_size / 60000 sampling_probability = FLAGS.batch_size / 60000
event = dp_event.SelfComposedDpEvent( event = dp_accounting.SelfComposedDpEvent(
dp_event.PoissonSampledDpEvent( dp_accounting.PoissonSampledDpEvent(
sampling_probability, sampling_probability,
dp_event.GaussianDpEvent(FLAGS.noise_multiplier)), steps) dp_accounting.GaussianDpEvent(FLAGS.noise_multiplier)), steps)
accountant.compose(event) accountant.compose(event)

View file

@ -16,14 +16,11 @@
from absl import app from absl import app
from absl import flags from absl import flags
from absl import logging from absl import logging
from com_google_differential_py.python.dp_accounting
import numpy as np import numpy as np
import tensorflow as tf import tensorflow as tf
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import DPKerasSGDOptimizer from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import DPKerasSGDOptimizer
from com_google_differential_py.python.dp_accounting import dp_event
from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant
flags.DEFINE_boolean( flags.DEFINE_boolean(
'dpsgd', True, 'If True, train with DP-SGD. If False, ' 'dpsgd', True, 'If True, train with DP-SGD. If False, '
@ -47,13 +44,13 @@ def compute_epsilon(steps):
if FLAGS.noise_multiplier == 0.0: if FLAGS.noise_multiplier == 0.0:
return float('inf') return float('inf')
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64)) orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
accountant = rdp_privacy_accountant.RdpAccountant(orders) accountant = dp_accounting.rdp.RdpAccountant(orders)
sampling_probability = FLAGS.batch_size / 60000 sampling_probability = FLAGS.batch_size / 60000
event = dp_event.SelfComposedDpEvent( event = dp_accounting.SelfComposedDpEvent(
dp_event.PoissonSampledDpEvent( dp_accounting.PoissonSampledDpEvent(
sampling_probability, sampling_probability,
dp_event.GaussianDpEvent(FLAGS.noise_multiplier)), steps) dp_accounting.GaussianDpEvent(FLAGS.noise_multiplier)), steps)
accountant.compose(event) accountant.compose(event)

View file

@ -16,13 +16,11 @@
from absl import app from absl import app
from absl import flags from absl import flags
from absl import logging from absl import logging
from com_google_differential_py.python.dp_accounting
import numpy as np import numpy as np
import tensorflow as tf import tensorflow as tf
from tensorflow_privacy.privacy.keras_models.dp_keras_model import DPSequential from tensorflow_privacy.privacy.keras_models.dp_keras_model import DPSequential
from com_google_differential_py.python.dp_accounting import dp_event
from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant
flags.DEFINE_boolean( flags.DEFINE_boolean(
'dpsgd', True, 'If True, train with DP-SGD. If False, ' 'dpsgd', True, 'If True, train with DP-SGD. If False, '
@ -46,13 +44,13 @@ def compute_epsilon(steps):
if FLAGS.noise_multiplier == 0.0: if FLAGS.noise_multiplier == 0.0:
return float('inf') return float('inf')
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64)) orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
accountant = rdp_privacy_accountant.RdpAccountant(orders) accountant = dp_accounting.rdp.RdpAccountant(orders)
sampling_probability = FLAGS.batch_size / 60000 sampling_probability = FLAGS.batch_size / 60000
event = dp_event.SelfComposedDpEvent( event = dp_accounting.SelfComposedDpEvent(
dp_event.PoissonSampledDpEvent( dp_accounting.PoissonSampledDpEvent(
sampling_probability, sampling_probability,
dp_event.GaussianDpEvent(FLAGS.noise_multiplier)), steps) dp_accounting.GaussianDpEvent(FLAGS.noise_multiplier)), steps)
accountant.compose(event) accountant.compose(event)

View file

@ -16,14 +16,13 @@
from absl import app from absl import app
from absl import flags from absl import flags
from absl import logging from absl import logging
from com_google_differential_py.python.dp_accounting
import numpy as np import numpy as np
import tensorflow as tf import tensorflow as tf
from tensorflow import estimator as tf_estimator from tensorflow import estimator as tf_estimator
from tensorflow.compat.v1 import estimator as tf_compat_v1_estimator from tensorflow.compat.v1 import estimator as tf_compat_v1_estimator
from tensorflow_privacy.privacy.optimizers import dp_optimizer_vectorized from tensorflow_privacy.privacy.optimizers import dp_optimizer_vectorized
from com_google_differential_py.python.dp_accounting import dp_event
from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant
flags.DEFINE_boolean( flags.DEFINE_boolean(
'dpsgd', True, 'If True, train with DP-SGD. If False, ' 'dpsgd', True, 'If True, train with DP-SGD. If False, '
@ -51,13 +50,13 @@ def compute_epsilon(steps):
if FLAGS.noise_multiplier == 0.0: if FLAGS.noise_multiplier == 0.0:
return float('inf') return float('inf')
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64)) orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
accountant = rdp_privacy_accountant.RdpAccountant(orders) accountant = dp_accounting.rdp.RdpAccountant(orders)
sampling_probability = FLAGS.batch_size / 60000 sampling_probability = FLAGS.batch_size / 60000
event = dp_event.SelfComposedDpEvent( event = dp_accounting.SelfComposedDpEvent(
dp_event.PoissonSampledDpEvent( dp_accounting.PoissonSampledDpEvent(
sampling_probability, sampling_probability,
dp_event.GaussianDpEvent(FLAGS.noise_multiplier)), steps) dp_accounting.GaussianDpEvent(FLAGS.noise_multiplier)), steps)
accountant.compose(event) accountant.compose(event)

View file

@ -26,13 +26,12 @@ import math
from absl import app from absl import app
from absl import flags from absl import flags
from absl import logging from absl import logging
from com_google_differential_py.python.dp_accounting
import numpy as np import numpy as np
import tensorflow as tf import tensorflow as tf
from tensorflow import estimator as tf_estimator from tensorflow import estimator as tf_estimator
from tensorflow.compat.v1 import estimator as tf_compat_v1_estimator from tensorflow.compat.v1 import estimator as tf_compat_v1_estimator
from tensorflow_privacy.privacy.optimizers import dp_optimizer from tensorflow_privacy.privacy.optimizers import dp_optimizer
from com_google_differential_py.python.dp_accounting import dp_event
from com_google_differential_py.python.dp_accounting.rdp import rdp_privacy_accountant
GradientDescentOptimizer = tf.compat.v1.train.GradientDescentOptimizer GradientDescentOptimizer = tf.compat.v1.train.GradientDescentOptimizer
@ -166,13 +165,14 @@ def print_privacy_guarantees(epochs, batch_size, samples, noise_multiplier):
# Using RDP accountant to compute eps. Doing computation analytically is # Using RDP accountant to compute eps. Doing computation analytically is
# an option. # an option.
rdp = [order * coef for order in orders] rdp = [order * coef for order in orders]
eps = rdp_privacy_accountant.compute_epsilon(orders, rdp, delta) eps = dp_accounting.rdp.compute_epsilon(orders, rdp, delta)
print('\t{:g}% enjoy at least ({:.2f}, {})-DP'.format(p * 100, eps, delta)) print('\t{:g}% enjoy at least ({:.2f}, {})-DP'.format(p * 100, eps, delta))
accountant = rdp_privacy_accountant.RdpAccountant(orders) accountant = dp_accounting.rdp.RdpAccountant(orders)
event = dp_event.SelfComposedDpEvent( event = dp_accounting.SelfComposedDpEvent(
dp_event.PoissonSampledDpEvent( dp_accounting.PoissonSampledDpEvent(
batch_size / samples, dp_event.GaussianDpEvent(noise_multiplier)), batch_size / samples,
dp_accounting.GaussianDpEvent(noise_multiplier)),
epochs * steps_per_epoch) epochs * steps_per_epoch)
accountant.compose(event) accountant.compose(event)
eps_sgm = accountant.get_epsilon(target_delta=delta) eps_sgm = accountant.get_epsilon(target_delta=delta)