forked from 626_privacy/tensorflow_privacy
Generalize the testing API to support input Tensors of dimension >1,
excluding the batch dimension. This is a forward-looking change for testing more general layers such as `tf.keras.layers.LayerNormalization` and `tf.keras.layers.EinsumDense`. PiperOrigin-RevId: 560709678
This commit is contained in:
parent
6248be8290
commit
b4b47b1403
5 changed files with 95 additions and 69 deletions
|
@ -110,10 +110,10 @@ class CustomLayerTest(tf.test.TestCase, parameterized.TestCase):
|
||||||
continue
|
continue
|
||||||
(computed_norms, true_norms) = (
|
(computed_norms, true_norms) = (
|
||||||
common_test_utils.get_computed_and_true_norms(
|
common_test_utils.get_computed_and_true_norms(
|
||||||
model_generator=common_test_utils.make_two_layer_sequential_model,
|
model_generator=common_test_utils.make_two_layer_functional_model,
|
||||||
layer_generator=lambda a, b: DoubleDense(b),
|
layer_generator=lambda a, b: DoubleDense(*b),
|
||||||
input_dims=input_dim,
|
input_dims=[input_dim],
|
||||||
output_dim=output_dim,
|
output_dims=[output_dim],
|
||||||
per_example_loss_fn=per_example_loss_fn,
|
per_example_loss_fn=per_example_loss_fn,
|
||||||
num_microbatches=num_microbatches,
|
num_microbatches=num_microbatches,
|
||||||
is_eager=is_eager,
|
is_eager=is_eager,
|
||||||
|
@ -136,7 +136,7 @@ class ComputeClippedGradsAndOutputsTest(
|
||||||
dense_generator = lambda a, b: tf.keras.layers.Dense(b)
|
dense_generator = lambda a, b: tf.keras.layers.Dense(b)
|
||||||
self._input_dim = 2
|
self._input_dim = 2
|
||||||
self._output_dim = 3
|
self._output_dim = 3
|
||||||
self._model = common_test_utils.make_two_layer_sequential_model(
|
self._model = common_test_utils.make_two_layer_functional_model(
|
||||||
dense_generator, self._input_dim, self._output_dim
|
dense_generator, self._input_dim, self._output_dim
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
|
@ -13,7 +13,7 @@
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
"""A collection of common utility functions for unit testing."""
|
"""A collection of common utility functions for unit testing."""
|
||||||
|
|
||||||
from typing import Callable, List, Optional, Tuple, Union
|
from typing import Callable, List, Optional, Tuple
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
@ -108,12 +108,12 @@ def compute_true_gradient_norms(
|
||||||
def get_model_from_generator(
|
def get_model_from_generator(
|
||||||
model_generator: type_aliases.ModelGenerator,
|
model_generator: type_aliases.ModelGenerator,
|
||||||
layer_generator: type_aliases.LayerGenerator,
|
layer_generator: type_aliases.LayerGenerator,
|
||||||
input_dims: Union[int, List[int]],
|
input_dims: List[int],
|
||||||
output_dim: int,
|
output_dims: List[int],
|
||||||
is_eager: bool,
|
is_eager: bool,
|
||||||
) -> tf.keras.Model:
|
) -> tf.keras.Model:
|
||||||
"""Creates a simple model from input specifications."""
|
"""Creates a simple model from input specifications."""
|
||||||
model = model_generator(layer_generator, input_dims, output_dim)
|
model = model_generator(layer_generator, input_dims, output_dims)
|
||||||
model.compile(
|
model.compile(
|
||||||
optimizer=tf.keras.optimizers.SGD(learning_rate=1.0),
|
optimizer=tf.keras.optimizers.SGD(learning_rate=1.0),
|
||||||
loss=tf.keras.losses.MeanSquaredError(
|
loss=tf.keras.losses.MeanSquaredError(
|
||||||
|
@ -171,8 +171,8 @@ def get_computed_and_true_norms_from_model(
|
||||||
def get_computed_and_true_norms(
|
def get_computed_and_true_norms(
|
||||||
model_generator: type_aliases.ModelGenerator,
|
model_generator: type_aliases.ModelGenerator,
|
||||||
layer_generator: type_aliases.LayerGenerator,
|
layer_generator: type_aliases.LayerGenerator,
|
||||||
input_dims: Union[int, List[int]],
|
input_dims: List[int],
|
||||||
output_dim: int,
|
output_dims: List[int],
|
||||||
per_example_loss_fn: Optional[Callable[[tf.Tensor, tf.Tensor], tf.Tensor]],
|
per_example_loss_fn: Optional[Callable[[tf.Tensor, tf.Tensor], tf.Tensor]],
|
||||||
num_microbatches: Optional[int],
|
num_microbatches: Optional[int],
|
||||||
is_eager: bool,
|
is_eager: bool,
|
||||||
|
@ -196,7 +196,7 @@ def get_computed_and_true_norms(
|
||||||
Returns a `tf.keras.layers.Layer` that accepts input tensors of dimension
|
Returns a `tf.keras.layers.Layer` that accepts input tensors of dimension
|
||||||
`idim` and returns output tensors of dimension `odim`.
|
`idim` and returns output tensors of dimension `odim`.
|
||||||
input_dims: The input dimension(s) of the test `tf.keras.Model` instance.
|
input_dims: The input dimension(s) of the test `tf.keras.Model` instance.
|
||||||
output_dim: The output dimension of the test `tf.keras.Model` instance.
|
output_dims: The output dimension(s) of the test `tf.keras.Model` instance.
|
||||||
per_example_loss_fn: If not None, used as vectorized per example loss
|
per_example_loss_fn: If not None, used as vectorized per example loss
|
||||||
function.
|
function.
|
||||||
num_microbatches: The number of microbatches. None or an integer.
|
num_microbatches: The number of microbatches. None or an integer.
|
||||||
|
@ -219,7 +219,7 @@ def get_computed_and_true_norms(
|
||||||
model_generator=model_generator,
|
model_generator=model_generator,
|
||||||
layer_generator=layer_generator,
|
layer_generator=layer_generator,
|
||||||
input_dims=input_dims,
|
input_dims=input_dims,
|
||||||
output_dim=output_dim,
|
output_dims=output_dims,
|
||||||
is_eager=is_eager,
|
is_eager=is_eager,
|
||||||
)
|
)
|
||||||
return get_computed_and_true_norms_from_model(
|
return get_computed_and_true_norms_from_model(
|
||||||
|
@ -234,64 +234,74 @@ def get_computed_and_true_norms(
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def reshape_and_sum(tensor: tf.Tensor) -> tf.Tensor:
|
||||||
|
"""Reshapes and sums along non-batch dims to get the shape [None, 1]."""
|
||||||
|
reshaped_2d = tf.reshape(tensor, [tf.shape(tensor)[0], -1])
|
||||||
|
return tf.reduce_sum(reshaped_2d, axis=-1, keepdims=True)
|
||||||
|
|
||||||
|
|
||||||
# ==============================================================================
|
# ==============================================================================
|
||||||
# Model generators.
|
# Model generators.
|
||||||
# ==============================================================================
|
# ==============================================================================
|
||||||
def make_two_layer_sequential_model(layer_generator, input_dim, output_dim):
|
def make_one_layer_functional_model(
|
||||||
"""Creates a 2-layer sequential model."""
|
layer_generator: type_aliases.LayerGenerator,
|
||||||
model = tf.keras.Sequential()
|
input_dims: List[int],
|
||||||
model.add(tf.keras.Input(shape=(input_dim,)))
|
output_dims: List[int],
|
||||||
model.add(layer_generator(input_dim, output_dim))
|
) -> tf.keras.Model:
|
||||||
model.add(tf.keras.layers.Dense(1))
|
"""Creates a 1-layer sequential model."""
|
||||||
return model
|
inputs = tf.keras.Input(shape=input_dims)
|
||||||
|
layer1 = layer_generator(input_dims, output_dims)
|
||||||
|
|
||||||
def make_three_layer_sequential_model(layer_generator, input_dim, output_dim):
|
|
||||||
"""Creates a 3-layer sequential model."""
|
|
||||||
model = tf.keras.Sequential()
|
|
||||||
model.add(tf.keras.Input(shape=(input_dim,)))
|
|
||||||
layer1 = layer_generator(input_dim, output_dim)
|
|
||||||
model.add(layer1)
|
|
||||||
if isinstance(layer1, tf.keras.layers.Embedding):
|
|
||||||
# Having multiple consecutive embedding layers does not make sense since
|
|
||||||
# embedding layers only map integers to real-valued vectors.
|
|
||||||
model.add(tf.keras.layers.Dense(output_dim))
|
|
||||||
else:
|
|
||||||
model.add(layer_generator(output_dim, output_dim))
|
|
||||||
model.add(tf.keras.layers.Dense(1))
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
def make_two_layer_functional_model(layer_generator, input_dim, output_dim):
|
|
||||||
"""Creates a 2-layer 1-input functional model with a pre-output square op."""
|
|
||||||
inputs = tf.keras.Input(shape=(input_dim,))
|
|
||||||
layer1 = layer_generator(input_dim, output_dim)
|
|
||||||
temp1 = layer1(inputs)
|
temp1 = layer1(inputs)
|
||||||
temp2 = tf.square(temp1)
|
outputs = reshape_and_sum(temp1)
|
||||||
outputs = tf.keras.layers.Dense(1)(temp2)
|
|
||||||
return tf.keras.Model(inputs=inputs, outputs=outputs)
|
return tf.keras.Model(inputs=inputs, outputs=outputs)
|
||||||
|
|
||||||
|
|
||||||
def make_two_tower_model(layer_generator, input_dim, output_dim):
|
def make_two_layer_functional_model(
|
||||||
|
layer_generator: type_aliases.LayerGenerator,
|
||||||
|
input_dims: List[int],
|
||||||
|
output_dims: List[int],
|
||||||
|
) -> tf.keras.Model:
|
||||||
|
"""Creates a 2-layer sequential model."""
|
||||||
|
inputs = tf.keras.Input(shape=input_dims)
|
||||||
|
layer1 = layer_generator(input_dims, output_dims)
|
||||||
|
temp1 = layer1(inputs)
|
||||||
|
temp2 = tf.keras.layers.Dense(1)(temp1)
|
||||||
|
outputs = reshape_and_sum(temp2)
|
||||||
|
return tf.keras.Model(inputs=inputs, outputs=outputs)
|
||||||
|
|
||||||
|
|
||||||
|
def make_two_tower_model(
|
||||||
|
layer_generator: type_aliases.LayerGenerator,
|
||||||
|
input_dims: List[int],
|
||||||
|
output_dims: List[int],
|
||||||
|
) -> tf.keras.Model:
|
||||||
"""Creates a 2-layer 2-input functional model."""
|
"""Creates a 2-layer 2-input functional model."""
|
||||||
inputs1 = tf.keras.Input(shape=(input_dim,))
|
inputs1 = tf.keras.Input(shape=input_dims)
|
||||||
layer1 = layer_generator(input_dim, output_dim)
|
layer1 = layer_generator(input_dims, output_dims)
|
||||||
temp1 = layer1(inputs1)
|
temp1 = layer1(inputs1)
|
||||||
inputs2 = tf.keras.Input(shape=(input_dim,))
|
inputs2 = tf.keras.Input(shape=input_dims)
|
||||||
layer2 = layer_generator(input_dim, output_dim)
|
layer2 = layer_generator(input_dims, output_dims)
|
||||||
temp2 = layer2(inputs2)
|
temp2 = layer2(inputs2)
|
||||||
temp3 = tf.add(temp1, temp2)
|
temp3 = tf.add(temp1, temp2)
|
||||||
outputs = tf.keras.layers.Dense(1)(temp3)
|
temp4 = tf.keras.layers.Dense(1)(temp3)
|
||||||
|
outputs = reshape_and_sum(temp4)
|
||||||
return tf.keras.Model(inputs=[inputs1, inputs2], outputs=outputs)
|
return tf.keras.Model(inputs=[inputs1, inputs2], outputs=outputs)
|
||||||
|
|
||||||
|
|
||||||
def make_bow_model(layer_generator, input_dims, output_dim):
|
def make_bow_model(
|
||||||
|
layer_generator: type_aliases.LayerGenerator,
|
||||||
|
input_dims: List[int],
|
||||||
|
output_dims: List[int],
|
||||||
|
) -> tf.keras.Model:
|
||||||
"""Creates a simple embedding bow model."""
|
"""Creates a simple embedding bow model."""
|
||||||
del layer_generator
|
del layer_generator
|
||||||
inputs = tf.keras.Input(shape=input_dims)
|
inputs = tf.keras.Input(shape=input_dims)
|
||||||
# For the Embedding layer, input_dim is the vocabulary size. This should
|
# For the Embedding layer, input_dim is the vocabulary size. This should
|
||||||
# be distinguished from the input_dim argument, which is the number of ids
|
# be distinguished from the input_dim argument, which is the number of ids
|
||||||
# in eache example.
|
# in eache example.
|
||||||
|
if len(output_dims) != 1:
|
||||||
|
raise ValueError('Expected `output_dims` to be of size 1.')
|
||||||
|
output_dim = output_dims[0]
|
||||||
emb_layer = tf.keras.layers.Embedding(input_dim=10, output_dim=output_dim)
|
emb_layer = tf.keras.layers.Embedding(input_dim=10, output_dim=output_dim)
|
||||||
feature_embs = emb_layer(inputs)
|
feature_embs = emb_layer(inputs)
|
||||||
# Embeddings add one extra dimension to its inputs, which combined with the
|
# Embeddings add one extra dimension to its inputs, which combined with the
|
||||||
|
@ -305,7 +315,11 @@ def make_bow_model(layer_generator, input_dims, output_dim):
|
||||||
return tf.keras.Model(inputs=inputs, outputs=example_embs)
|
return tf.keras.Model(inputs=inputs, outputs=example_embs)
|
||||||
|
|
||||||
|
|
||||||
def make_dense_bow_model(layer_generator, input_dims, output_dim):
|
def make_dense_bow_model(
|
||||||
|
layer_generator: type_aliases.LayerGenerator,
|
||||||
|
input_dims: List[int],
|
||||||
|
output_dims: List[int],
|
||||||
|
) -> tf.keras.Model:
|
||||||
"""Creates an embedding bow model with a `Dense` layer."""
|
"""Creates an embedding bow model with a `Dense` layer."""
|
||||||
del layer_generator
|
del layer_generator
|
||||||
inputs = tf.keras.Input(shape=input_dims)
|
inputs = tf.keras.Input(shape=input_dims)
|
||||||
|
@ -313,6 +327,9 @@ def make_dense_bow_model(layer_generator, input_dims, output_dim):
|
||||||
# be distinguished from the input_dim argument, which is the number of ids
|
# be distinguished from the input_dim argument, which is the number of ids
|
||||||
# in eache example.
|
# in eache example.
|
||||||
cardinality = 10
|
cardinality = 10
|
||||||
|
if len(output_dims) != 1:
|
||||||
|
raise ValueError('Expected `output_dims` to be of size 1.')
|
||||||
|
output_dim = output_dims[0]
|
||||||
emb_layer = tf.keras.layers.Embedding(
|
emb_layer = tf.keras.layers.Embedding(
|
||||||
input_dim=cardinality, output_dim=output_dim
|
input_dim=cardinality, output_dim=output_dim
|
||||||
)
|
)
|
||||||
|
@ -329,7 +346,11 @@ def make_dense_bow_model(layer_generator, input_dims, output_dim):
|
||||||
return tf.keras.Model(inputs=inputs, outputs=outputs)
|
return tf.keras.Model(inputs=inputs, outputs=outputs)
|
||||||
|
|
||||||
|
|
||||||
def make_weighted_bow_model(layer_generator, input_dims, output_dim):
|
def make_weighted_bow_model(
|
||||||
|
layer_generator: type_aliases.LayerGenerator,
|
||||||
|
input_dims: List[int],
|
||||||
|
output_dims: List[int],
|
||||||
|
) -> tf.keras.Model:
|
||||||
"""Creates a weighted embedding bow model."""
|
"""Creates a weighted embedding bow model."""
|
||||||
# NOTE: This model only accepts dense input tensors.
|
# NOTE: This model only accepts dense input tensors.
|
||||||
del layer_generator
|
del layer_generator
|
||||||
|
@ -338,6 +359,9 @@ def make_weighted_bow_model(layer_generator, input_dims, output_dim):
|
||||||
# be distinguished from the input_dim argument, which is the number of ids
|
# be distinguished from the input_dim argument, which is the number of ids
|
||||||
# in eache example.
|
# in eache example.
|
||||||
cardinality = 10
|
cardinality = 10
|
||||||
|
if len(output_dims) != 1:
|
||||||
|
raise ValueError('Expected `output_dims` to be of size 1.')
|
||||||
|
output_dim = output_dims[0]
|
||||||
emb_layer = tf.keras.layers.Embedding(
|
emb_layer = tf.keras.layers.Embedding(
|
||||||
input_dim=cardinality, output_dim=output_dim
|
input_dim=cardinality, output_dim=output_dim
|
||||||
)
|
)
|
||||||
|
|
|
@ -23,21 +23,21 @@ from tensorflow_privacy.privacy.fast_gradient_clipping.registry_functions import
|
||||||
# Helper functions.
|
# Helper functions.
|
||||||
# ==============================================================================
|
# ==============================================================================
|
||||||
def get_dense_layer_generators():
|
def get_dense_layer_generators():
|
||||||
def sigmoid_dense_layer(b):
|
|
||||||
return tf.keras.layers.Dense(b, activation='sigmoid')
|
def sigmoid_dense_layer(units):
|
||||||
|
return tf.keras.layers.Dense(units, activation='sigmoid')
|
||||||
|
|
||||||
return {
|
return {
|
||||||
'pure_dense': lambda a, b: tf.keras.layers.Dense(b),
|
'pure_dense': lambda a, b: tf.keras.layers.Dense(b[0]),
|
||||||
'sigmoid_dense': lambda a, b: sigmoid_dense_layer(b),
|
'sigmoid_dense': lambda a, b: sigmoid_dense_layer(b[0]),
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
def get_dense_model_generators():
|
def get_dense_model_generators():
|
||||||
return {
|
return {
|
||||||
'seq1': common_test_utils.make_two_layer_sequential_model,
|
'func1': common_test_utils.make_one_layer_functional_model,
|
||||||
'seq2': common_test_utils.make_three_layer_sequential_model,
|
'func2': common_test_utils.make_two_layer_functional_model,
|
||||||
'func1': common_test_utils.make_two_layer_functional_model,
|
'tower2': common_test_utils.make_two_tower_model,
|
||||||
'tower1': common_test_utils.make_two_tower_model,
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@ -62,7 +62,7 @@ class GradNormTest(tf.test.TestCase, parameterized.TestCase):
|
||||||
@parameterized.product(
|
@parameterized.product(
|
||||||
model_name=list(get_dense_model_generators().keys()),
|
model_name=list(get_dense_model_generators().keys()),
|
||||||
layer_name=list(get_dense_layer_generators().keys()),
|
layer_name=list(get_dense_layer_generators().keys()),
|
||||||
input_dim=[4],
|
input_dims=[[4]],
|
||||||
output_dim=[2],
|
output_dim=[2],
|
||||||
layer_registry_name=list(get_dense_layer_registries().keys()),
|
layer_registry_name=list(get_dense_layer_registries().keys()),
|
||||||
per_example_loss_fn=[None, common_test_utils.test_loss_fn],
|
per_example_loss_fn=[None, common_test_utils.test_loss_fn],
|
||||||
|
@ -75,7 +75,7 @@ class GradNormTest(tf.test.TestCase, parameterized.TestCase):
|
||||||
self,
|
self,
|
||||||
model_name,
|
model_name,
|
||||||
layer_name,
|
layer_name,
|
||||||
input_dim,
|
input_dims,
|
||||||
output_dim,
|
output_dim,
|
||||||
layer_registry_name,
|
layer_registry_name,
|
||||||
per_example_loss_fn,
|
per_example_loss_fn,
|
||||||
|
@ -85,15 +85,17 @@ class GradNormTest(tf.test.TestCase, parameterized.TestCase):
|
||||||
weighted,
|
weighted,
|
||||||
):
|
):
|
||||||
# Parse inputs to generate test data.
|
# Parse inputs to generate test data.
|
||||||
x_batches, weight_batches = common_test_utils.get_nd_test_batches(input_dim)
|
x_batches, weight_batches = common_test_utils.get_nd_test_batches(
|
||||||
|
input_dims[0]
|
||||||
|
)
|
||||||
|
|
||||||
# Load shared assets to all devices.
|
# Load shared assets to all devices.
|
||||||
with self.strategy.scope():
|
with self.strategy.scope():
|
||||||
model = common_test_utils.get_model_from_generator(
|
model = common_test_utils.get_model_from_generator(
|
||||||
model_generator=get_dense_model_generators()[model_name],
|
model_generator=get_dense_model_generators()[model_name],
|
||||||
layer_generator=get_dense_layer_generators()[layer_name],
|
layer_generator=get_dense_layer_generators()[layer_name],
|
||||||
input_dims=input_dim,
|
input_dims=input_dims,
|
||||||
output_dim=output_dim,
|
output_dims=[output_dim],
|
||||||
is_eager=is_eager,
|
is_eager=is_eager,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -103,7 +105,7 @@ class GradNormTest(tf.test.TestCase, parameterized.TestCase):
|
||||||
model=model,
|
model=model,
|
||||||
per_example_loss_fn=per_example_loss_fn,
|
per_example_loss_fn=per_example_loss_fn,
|
||||||
num_microbatches=num_microbatches,
|
num_microbatches=num_microbatches,
|
||||||
x_batch=[x_batch, x_batch] if model_name == 'tower1' else x_batch,
|
x_batch=[x_batch, x_batch] if model_name == 'tower2' else x_batch,
|
||||||
weight_batch=weight_batch if weighted else None,
|
weight_batch=weight_batch if weighted else None,
|
||||||
registry=get_dense_layer_registries()[layer_registry_name],
|
registry=get_dense_layer_registries()[layer_registry_name],
|
||||||
partial=partial,
|
partial=partial,
|
||||||
|
|
|
@ -119,7 +119,7 @@ class GradNormTest(tf.test.TestCase, parameterized.TestCase):
|
||||||
model_generator=get_embedding_model_generators()[model_name],
|
model_generator=get_embedding_model_generators()[model_name],
|
||||||
layer_generator=None,
|
layer_generator=None,
|
||||||
input_dims=embed_indices.shape[1:],
|
input_dims=embed_indices.shape[1:],
|
||||||
output_dim=output_dim,
|
output_dims=[output_dim],
|
||||||
is_eager=is_eager,
|
is_eager=is_eager,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
|
@ -45,5 +45,5 @@ GeneratorFunction = Optional[Callable[[Any, Tuple, Dict], Tuple[Any, Any]]]
|
||||||
LayerGenerator = Callable[[int, int], tf.keras.layers.Layer]
|
LayerGenerator = Callable[[int, int], tf.keras.layers.Layer]
|
||||||
|
|
||||||
ModelGenerator = Callable[
|
ModelGenerator = Callable[
|
||||||
[LayerGenerator, Union[int, List[int]], int], tf.keras.Model
|
[LayerGenerator, List[int], List[int]], tf.keras.Model
|
||||||
]
|
]
|
||||||
|
|
Loading…
Reference in a new issue