From b6c932ec661caf0c7d248d79e4e62739ae0e228c Mon Sep 17 00:00:00 2001 From: npapernot Date: Mon, 18 Mar 2019 16:47:36 +0000 Subject: [PATCH] quotes --- research/pate_2017/input.py | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) diff --git a/research/pate_2017/input.py b/research/pate_2017/input.py index 65c300b..fd7a78d 100644 --- a/research/pate_2017/input.py +++ b/research/pate_2017/input.py @@ -130,7 +130,7 @@ def extract_svhn(local_url): data_dict = loadmat(file_obj) # Extract each dictionary (one for data, one for labels) - data, labels = data_dict["X"], data_dict["y"] + data, labels = data_dict['X'], data_dict['y'] # Set np type data = np.asarray(data, dtype=np.float32) @@ -197,8 +197,8 @@ def extract_cifar10(local_url, data_dir): else: # Do everything from scratch # Define lists of all files we should extract - train_files = ["data_batch_" + str(i) for i in xrange(1, 6)] - test_file = ["test_batch"] + train_files = ['data_batch_' + str(i) for i in xrange(1, 6)] + test_file = ['test_batch'] cifar10_files = train_files + test_file # Check if all files have already been extracted @@ -217,7 +217,7 @@ def extract_cifar10(local_url, data_dir): labels = [] for file in train_files: # Construct filename - filename = data_dir + "/cifar-10-batches-py/" + file + filename = data_dir + '/cifar-10-batches-py/' + file # Unpickle dictionary and extract images and labels images_tmp, labels_tmp = unpickle_cifar_dic(filename) @@ -236,7 +236,7 @@ def extract_cifar10(local_url, data_dir): np.save(data_dir + preprocessed_files[1], train_labels) # Construct filename for test file - filename = data_dir + "/cifar-10-batches-py/" + test_file[0] + filename = data_dir + '/cifar-10-batches-py/' + test_file[0] # Load test images and labels test_data, test_images = unpickle_cifar_dic(filename) @@ -260,7 +260,7 @@ def extract_mnist_data(filename, num_images, image_size, pixel_depth): Values are rescaled from [0, 255] down to [-0.5, 0.5]. """ # if not os.path.exists(file): - if not tf.gfile.Exists(filename+".npy"): + if not tf.gfile.Exists(filename+'.npy'): with gzip.open(filename) as bytestream: bytestream.read(16) buf = bytestream.read(image_size * image_size * num_images) @@ -270,7 +270,7 @@ def extract_mnist_data(filename, num_images, image_size, pixel_depth): np.save(filename, data) return data else: - with tf.gfile.Open(filename+".npy", mode='r') as file_obj: + with tf.gfile.Open(filename+'.npy', mode='r') as file_obj: return np.load(file_obj) @@ -279,7 +279,7 @@ def extract_mnist_labels(filename, num_images): Extract the labels into a vector of int64 label IDs. """ # if not os.path.exists(file): - if not tf.gfile.Exists(filename+".npy"): + if not tf.gfile.Exists(filename+'.npy'): with gzip.open(filename) as bytestream: bytestream.read(8) buf = bytestream.read(1 * num_images) @@ -287,7 +287,7 @@ def extract_mnist_labels(filename, num_images): np.save(filename, labels) return labels else: - with tf.gfile.Open(filename+".npy", mode='r') as file_obj: + with tf.gfile.Open(filename+'.npy', mode='r') as file_obj: return np.load(file_obj)