forked from 626_privacy/tensorflow_privacy
Move doc str below functions
This commit is contained in:
parent
fe82de2cfe
commit
b9b2e8670f
1 changed files with 24 additions and 5 deletions
|
@ -23,14 +23,14 @@ import numpy as np
|
||||||
from scipy.stats import norm
|
from scipy.stats import norm
|
||||||
from scipy import optimize
|
from scipy import optimize
|
||||||
|
|
||||||
# Total number of examples:N
|
|
||||||
# batch size:batch_size
|
|
||||||
# Noise multiplier for DP-SGD/DP-Adam:noise_multiplier
|
|
||||||
# current epoch:epoch
|
|
||||||
# Target delta:delta
|
|
||||||
|
|
||||||
def compute_mu_uniform(epoch, noise_multi, N, batch_size):
|
def compute_mu_uniform(epoch, noise_multi, N, batch_size):
|
||||||
'''Compute mu from uniform subsampling.'''
|
'''Compute mu from uniform subsampling.'''
|
||||||
|
# Total number of examples:N
|
||||||
|
# batch size:batch_size
|
||||||
|
# Noise multiplier for DP-SGD/DP-Adam:noise_multi
|
||||||
|
# current epoch:epoch
|
||||||
|
|
||||||
T = epoch*N/batch_size
|
T = epoch*N/batch_size
|
||||||
c = batch_size*np.sqrt(T)/N
|
c = batch_size*np.sqrt(T)/N
|
||||||
return np.sqrt(2)*c*np.sqrt(np.exp(noise_multi**(-2))*\
|
return np.sqrt(2)*c*np.sqrt(np.exp(noise_multi**(-2))*\
|
||||||
|
@ -38,6 +38,11 @@ def compute_mu_uniform(epoch, noise_multi, N, batch_size):
|
||||||
|
|
||||||
def compute_mu_poisson(epoch, noise_multi, N, batch_size):
|
def compute_mu_poisson(epoch, noise_multi, N, batch_size):
|
||||||
'''Compute mu from Poisson subsampling.'''
|
'''Compute mu from Poisson subsampling.'''
|
||||||
|
# Total number of examples:N
|
||||||
|
# batch size:batch_size
|
||||||
|
# Noise multiplier for DP-SGD/DP-Adam:noise_multi
|
||||||
|
# current epoch:epoch
|
||||||
|
|
||||||
T = epoch*N/batch_size
|
T = epoch*N/batch_size
|
||||||
return np.sqrt(np.exp(noise_multi**(-2))-1)*np.sqrt(T)*batch_size/N
|
return np.sqrt(np.exp(noise_multi**(-2))-1)*np.sqrt(T)*batch_size/N
|
||||||
|
|
||||||
|
@ -47,6 +52,8 @@ def delta_eps_mu(eps, mu):
|
||||||
|
|
||||||
def eps_from_mu(mu, delta):
|
def eps_from_mu(mu, delta):
|
||||||
'''Compute epsilon from mu given delta via inverse dual.'''
|
'''Compute epsilon from mu given delta via inverse dual.'''
|
||||||
|
# Target delta:delta
|
||||||
|
|
||||||
def f(x):
|
def f(x):
|
||||||
'''Reversely solve dual by matching delta.'''
|
'''Reversely solve dual by matching delta.'''
|
||||||
return delta_eps_mu(x, mu) - delta
|
return delta_eps_mu(x, mu) - delta
|
||||||
|
@ -54,8 +61,20 @@ def eps_from_mu(mu, delta):
|
||||||
|
|
||||||
def compute_eps_uniform(epoch, noise_multi, N, batch_size, delta):
|
def compute_eps_uniform(epoch, noise_multi, N, batch_size, delta):
|
||||||
'''Compute epsilon given delta from inverse dual of uniform subsampling.'''
|
'''Compute epsilon given delta from inverse dual of uniform subsampling.'''
|
||||||
|
# Total number of examples:N
|
||||||
|
# batch size:batch_size
|
||||||
|
# Noise multiplier for DP-SGD/DP-Adam:noise_multi
|
||||||
|
# current epoch:epoch
|
||||||
|
# Target delta:delta
|
||||||
|
|
||||||
return eps_from_mu(compute_mu_uniform(epoch, noise_multi, N, batch_size), delta)
|
return eps_from_mu(compute_mu_uniform(epoch, noise_multi, N, batch_size), delta)
|
||||||
|
|
||||||
def compute_eps_poisson(epoch, noise_multi, N, batch_size, delta):
|
def compute_eps_poisson(epoch, noise_multi, N, batch_size, delta):
|
||||||
'''Compute epsilon given delta from inverse dual of Poisson subsampling.'''
|
'''Compute epsilon given delta from inverse dual of Poisson subsampling.'''
|
||||||
|
# Total number of examples:N
|
||||||
|
# batch size:batch_size
|
||||||
|
# Noise multiplier for DP-SGD/DP-Adam:noise_multi
|
||||||
|
# current epoch:epoch
|
||||||
|
# Target delta:delta
|
||||||
|
|
||||||
return eps_from_mu(compute_mu_poisson(epoch, noise_multi, N, batch_size), delta)
|
return eps_from_mu(compute_mu_poisson(epoch, noise_multi, N, batch_size), delta)
|
||||||
|
|
Loading…
Reference in a new issue