Update MIA README to include epsilon lower bound.

PiperOrigin-RevId: 689814531
This commit is contained in:
Shuang Song 2024-10-25 09:28:02 -07:00 committed by A. Unique TensorFlower
parent d965556ebb
commit ba903145df
2 changed files with 471 additions and 459 deletions

View file

@ -10,7 +10,8 @@ memorization is present and thus the less privacy-preserving the model is.
The privacy vulnerability (or memorization potential) is measured via the area The privacy vulnerability (or memorization potential) is measured via the area
under the ROC-curve (`auc`) or via max{|fpr - tpr|} (`advantage`) of the attack under the ROC-curve (`auc`) or via max{|fpr - tpr|} (`advantage`) of the attack
classifier. These measures are very closely related. classifier. These measures are very closely related. We can also obtain a lower
bound for the differential privacy epsilon.
The tests provided by the library are "black box". That is, only the outputs of The tests provided by the library are "black box". That is, only the outputs of
the model are used (e.g., losses, logits, predictions). Neither model internals the model are used (e.g., losses, logits, predictions). Neither model internals
@ -38,9 +39,8 @@ from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_s
# loss_test shape: (n_test, ) # loss_test shape: (n_test, )
attacks_result = mia.run_attacks( attacks_result = mia.run_attacks(
AttackInputData( AttackInputData(loss_train=loss_train, loss_test=loss_test)
loss_train = loss_train, )
loss_test = loss_test))
``` ```
This example calls `run_attacks` with the default options to run a host of This example calls `run_attacks` with the default options to run a host of
@ -57,9 +57,11 @@ Then, we can view the attack results by:
```python ```python
print(attacks_result.summary()) print(attacks_result.summary())
# Example output: # Example output:
# -> Best-performing attacks over all slices # Best-performing attacks over all slices
# THRESHOLD_ATTACK (with 50000 training and 10000 test examples) achieved an AUC of 0.59 on slice Entire dataset # LOGISTIC_REGRESSION (with 7041 training and 3156 test examples) achieved an AUC of 0.72 on slice CORRECTLY_CLASSIFIED=False
# THRESHOLD_ATTACK (with 50000 training and 10000 test examples) achieved an advantage of 0.20 on slice Entire dataset # LOGISTIC_REGRESSION (with 7041 training and 3156 test examples) achieved an advantage of 0.34 on slice CORRECTLY_CLASSIFIED=False
# LOGISTIC_REGRESSION (with 5000 training and 1000 test examples) achieved a positive predictive value of 1.00 on slice CLASS=0
# THRESHOLD_ATTACK (with 50000 training and 10000 test examples) achieved top-5 epsilon lower bounds of 4.6254, 4.6121, 4.5986, 4.5850, 4.5711 on slice Entire dataset
``` ```
### Other codelabs ### Other codelabs
@ -105,11 +107,12 @@ attack_input = AttackInputData(
loss_train=loss_train, loss_train=loss_train,
loss_test=loss_test, loss_test=loss_test,
labels_train=labels_train, labels_train=labels_train,
labels_test = labels_test) labels_test=labels_test,
)
``` ```
Instead of `logits`, you can also specify `probs_train` and `probs_test` as the Instead of `logits`, you can also specify `probs_train` and `probs_test` as the
predicted probabilty vectors of each example. predicted probability vectors of each example.
Then, we specify some details of the attack. The first part includes the Then, we specify some details of the attack. The first part includes the
specifications of the slicing of the data. For example, we may want to evaluate specifications of the slicing of the data. For example, we may want to evaluate
@ -121,7 +124,8 @@ slicing_spec = SlicingSpec(
entire_dataset=True, entire_dataset=True,
by_class=True, by_class=True,
by_percentiles=False, by_percentiles=False,
by_classification_correctness = True) by_classification_correctness=True,
)
``` ```
The second part specifies the classifiers for the attacker to use. Currently, The second part specifies the classifiers for the attacker to use. Currently,
@ -129,56 +133,64 @@ our API supports five classifiers, including `AttackType.THRESHOLD_ATTACK` for
simple threshold attack, `AttackType.LOGISTIC_REGRESSION`, simple threshold attack, `AttackType.LOGISTIC_REGRESSION`,
`AttackType.MULTI_LAYERED_PERCEPTRON`, `AttackType.RANDOM_FOREST`, and `AttackType.MULTI_LAYERED_PERCEPTRON`, `AttackType.RANDOM_FOREST`, and
`AttackType.K_NEAREST_NEIGHBORS` which use the corresponding machine learning `AttackType.K_NEAREST_NEIGHBORS` which use the corresponding machine learning
models. For some model, different classifiers can yield pertty different models. For some model, different classifiers can yield pretty different
results. We can put multiple classifers in a list: results. We can put multiple classifiers in a list:
```python ```python
attack_types = [ attack_types = [
AttackType.THRESHOLD_ATTACK, AttackType.THRESHOLD_ATTACK,
AttackType.LOGISTIC_REGRESSION AttackType.LOGISTIC_REGRESSION,
] ]
``` ```
Now, we can call the `run_attacks` methods with all specifications: Now, we can call the `run_attacks` methods with all specifications:
```python ```python
attacks_result = mia.run_attacks(attack_input=attack_input, attacks_result = mia.run_attacks(
attack_input=attack_input,
slicing_spec=slicing_spec, slicing_spec=slicing_spec,
attack_types=attack_types) attack_types=attack_types,
)
``` ```
This returns an object of type `AttackResults`. We can, for example, use the This returns an object of type `AttackResults`. We can, for example, use the
following code to see the attack results specificed per-slice, as we have following code to see the attack results specified per-slice, as we have request
request attacks by class and by model's classification correctness. attacks by class and by model's classification correctness.
```python ```python
print(attacks_result.summary(by_slices = True)) print(attacks_result.summary(by_slices = True))
# Example output: # Example output:
# -> Best-performing attacks over all slices # Best-performing attacks over all slices
# THRESHOLD_ATTACK achieved an AUC of 0.75 on slice CORRECTLY_CLASSIFIED=False # LOGISTIC_REGRESSION (with 7041 training and 3156 test examples) achieved an AUC of 0.72 on slice CORRECTLY_CLASSIFIED=False
# THRESHOLD_ATTACK achieved an advantage of 0.38 on slice CORRECTLY_CLASSIFIED=False # LOGISTIC_REGRESSION (with 7041 training and 3156 test examples) achieved an advantage of 0.34 on slice CORRECTLY_CLASSIFIED=False
# # LOGISTIC_REGRESSION (with 5000 training and 1000 test examples) achieved a positive predictive value of 1.00 on slice CLASS=0
# THRESHOLD_ATTACK (with 50000 training and 10000 test examples) achieved top-5 epsilon lower bounds of 4.6254, 4.6121, 4.5986, 4.5850, 4.5711 on slice Entire dataset
# Best-performing attacks over slice: "Entire dataset" # Best-performing attacks over slice: "Entire dataset"
# LOGISTIC_REGRESSION achieved an AUC of 0.61 # LOGISTIC_REGRESSION (with 50000 training and 10000 test examples) achieved an AUC of 0.58
# THRESHOLD_ATTACK achieved an advantage of 0.22 # LOGISTIC_REGRESSION (with 50000 training and 10000 test examples) achieved an advantage of 0.17
# # THRESHOLD_ATTACK (with 50000 training and 10000 test examples) achieved a positive predictive value of 0.86
# THRESHOLD_ATTACK (with 50000 training and 10000 test examples) achieved top-5 epsilon lower bounds of 4.6254, 4.6121, 4.5986, 4.5850, 4.5711
# Best-performing attacks over slice: "CLASS=0" # Best-performing attacks over slice: "CLASS=0"
# LOGISTIC_REGRESSION achieved an AUC of 0.62 # LOGISTIC_REGRESSION (with 5000 training and 1000 test examples) achieved an AUC of 0.63
# LOGISTIC_REGRESSION achieved an advantage of 0.24 # LOGISTIC_REGRESSION (with 5000 training and 1000 test examples) achieved an advantage of 0.19
# # LOGISTIC_REGRESSION (with 5000 training and 1000 test examples) achieved a positive predictive value of 1.00
# Best-performing attacks over slice: "CLASS=1" # THRESHOLD_ATTACK (with 5000 training and 1000 test examples) achieved top-5 epsilon lower bounds of 4.1920, 4.1645, 4.1364, 4.1074, 4.0775
# LOGISTIC_REGRESSION achieved an AUC of 0.61
# LOGISTIC_REGRESSION achieved an advantage of 0.19
#
# ... # ...
#
# Best-performing attacks over slice: "CORRECTLY_CLASSIFIED=True" # Best-performing attacks over slice: "CORRECTLY_CLASSIFIED=True"
# LOGISTIC_REGRESSION achieved an AUC of 0.53 # LOGISTIC_REGRESSION (with 42959 training and 6844 test examples) achieved an AUC of 0.51
# THRESHOLD_ATTACK achieved an advantage of 0.05 # LOGISTIC_REGRESSION (with 42959 training and 6844 test examples) achieved an advantage of 0.05
# # LOGISTIC_REGRESSION (with 42959 training and 6844 test examples) achieved a positive predictive value of 0.94
# THRESHOLD_ATTACK (with 42959 training and 6844 test examples) achieved top-5 epsilon lower bounds of 0.9495, 0.6358, 0.5630, 0.4536, 0.4341
# Best-performing attacks over slice: "CORRECTLY_CLASSIFIED=False" # Best-performing attacks over slice: "CORRECTLY_CLASSIFIED=False"
# THRESHOLD_ATTACK achieved an AUC of 0.75 # LOGISTIC_REGRESSION (with 7041 training and 3156 test examples) achieved an AUC of 0.72
# THRESHOLD_ATTACK achieved an advantage of 0.38 # LOGISTIC_REGRESSION (with 7041 training and 3156 test examples) achieved an advantage of 0.34
# LOGISTIC_REGRESSION (with 7041 training and 3156 test examples) achieved a positive predictive value of 0.97
# LOGISTIC_REGRESSION (with 7041 training and 3156 test examples) achieved top-5 epsilon lower bounds of 3.8844, 3.8678, 3.8510, 3.8339, 3.8165
``` ```
#### Viewing and plotting the attack results #### Viewing and plotting the attack results
@ -186,23 +198,30 @@ print(attacks_result.summary(by_slices = True))
We have seen an example of using `summary()` to view the attack results as text. We have seen an example of using `summary()` to view the attack results as text.
We also provide some other ways for inspecting the attack results. We also provide some other ways for inspecting the attack results.
To get the attack that achieves the maximum attacker advantage or AUC, we can do To get the attack that achieves the maximum attacker advantage, AUC, or epsilon
lower bound, we can do
```python ```python
max_auc_attacker = attacks_result.get_result_with_max_auc() max_auc_attacker = attacks_result.get_result_with_max_auc()
max_advantage_attacker = attacks_result.get_result_with_max_attacker_advantage() max_advantage_attacker = attacks_result.get_result_with_max_attacker_advantage()
max_epsilon_attacker = attacks_result.get_result_with_max_epsilon()
``` ```
Then, for individual attack, such as `max_auc_attacker`, we can check its type, Then, for individual attack, such as `max_auc_attacker`, we can check its type,
attacker advantage and AUC by attacker advantage, AUC, and epsilon lower bound by
```python ```python
print("Attack type with max AUC: %s, AUC of %.2f, Attacker advantage of %.2f" % print(
(max_auc_attacker.attack_type, "Attack type with max AUC: %s, AUC of %.2f, Attacker advantage of %.2f, Epsilon lower bound of %s"
% (
max_auc_attacker.attack_type,
max_auc_attacker.roc_curve.get_auc(), max_auc_attacker.roc_curve.get_auc(),
max_auc_attacker.roc_curve.get_attacker_advantage())) max_auc_attacker.roc_curve.get_attacker_advantage(),
max_auc_attacker.get_epsilon_lower_bound()
)
)
# Example output: # Example output:
# -> Attack type with max AUC: THRESHOLD_ATTACK, AUC of 0.75, Attacker advantage of 0.38 # Attack type with max AUC: LOGISTIC_REGRESSION, AUC of 0.72, Attacker advantage of 0.34, Epsilon lower bound of [3.88435257 3.86781797 3.85100545 3.83390548 3.81650809]
``` ```
We can also plot its ROC curve by We can also plot its ROC curve by
@ -225,16 +244,16 @@ import pandas as pd
pd.set_option("display.max_rows", 8, "display.max_columns", None) pd.set_option("display.max_rows", 8, "display.max_columns", None)
print(attacks_result.calculate_pd_dataframe()) print(attacks_result.calculate_pd_dataframe())
# Example output: # Example output:
# slice feature slice value attack type Attacker advantage AUC # slice feature slice value train size test size attack type Attacker advantage Positive predictive value AUC Epsilon lower bound_1 Epsilon lower bound_2 Epsilon lower bound_3 Epsilon lower bound_4 Epsilon lower bound_5
# 0 entire_dataset threshold 0.216440 0.600630 # 0 Entire dataset 50000 10000 THRESHOLD_ATTACK 0.172520 0.862614 0.581630 4.625393 4.612104 4.598635 4.584982 4.571140
# 1 entire_dataset lr 0.212073 0.612989 # 1 Entire dataset 50000 10000 LOGISTIC_REGRESSION 0.173060 0.862081 0.583981 4.531399 4.513775 4.511974 4.498905 4.492165
# 2 class 0 threshold 0.226000 0.611669 # 2 class 0 5000 1000 THRESHOLD_ATTACK 0.162000 0.877551 0.580728 4.191954 4.164547 4.136368 4.107372 4.077511
# 3 class 0 lr 0.239452 0.624076 # 3 class 0 5000 1000 LOGISTIC_REGRESSION 0.193800 1.000000 0.627758 3.289194 3.220285 3.146292 3.118849 3.066407
# .. ... ... ... ... ... # ...
# 22 correctly_classfied True threshold 0.054907 0.471290 # 22 correctly_classified True 42959 6844 THRESHOLD_ATTACK 0.043953 0.862643 0.474713 0.949550 0.635773 0.563032 0.453640 0.434125
# 23 correctly_classfied True lr 0.046986 0.525194 # 23 correctly_classified True 42959 6844 LOGISTIC_REGRESSION 0.048963 0.943218 0.505334 0.597257 0.596095 0.594016 0.592702 0.590765
# 24 correctly_classfied False threshold 0.379465 0.748138 # 24 correctly_classified False 7041 3156 THRESHOLD_ATTACK 0.326865 0.941176 0.707597 3.818741 3.805451 3.791982 3.778329 3.764488
# 25 correctly_classfied False lr 0.370713 0.737148 # 25 correctly_classified False 7041 3156 LOGISTIC_REGRESSION 0.336655 0.972222 0.717386 3.884353 3.867818 3.851005 3.833905 3.816508
``` ```
#### Advanced Membership Inference Attacks #### Advanced Membership Inference Attacks

View file

@ -3,7 +3,6 @@
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": { "metadata": {
"colab_type": "text",
"id": "1eiwVljWpzM7" "id": "1eiwVljWpzM7"
}, },
"source": [ "source": [
@ -14,9 +13,6 @@
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": { "metadata": {
"cellView": "both",
"colab": {},
"colab_type": "code",
"id": "4rmwPgXeptiS" "id": "4rmwPgXeptiS"
}, },
"outputs": [], "outputs": [],
@ -37,7 +33,6 @@
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": { "metadata": {
"colab_type": "text",
"id": "YM2gRaJMqvMi" "id": "YM2gRaJMqvMi"
}, },
"source": [ "source": [
@ -47,24 +42,22 @@
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": { "metadata": {
"colab_type": "text",
"id": "-B5ZvlSqqLaR" "id": "-B5ZvlSqqLaR"
}, },
"source": [ "source": [
"<table class=\"tfo-notebook-buttons\" align=\"left\">\n", "\u003ctable class=\"tfo-notebook-buttons\" align=\"left\"\u003e\n",
" <td>\n", " \u003ctd\u003e\n",
" <a target=\"_blank\" href=\"https://colab.research.google.com/github/tensorflow/privacy/blob/master/tensorflow_privacy/privacy/privacy_tests/membership_inference_attack/codelabs/codelab.ipynb\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" />Run in Google Colab</a>\n", " \u003ca target=\"_blank\" href=\"https://colab.research.google.com/github/tensorflow/privacy/blob/master/tensorflow_privacy/privacy/privacy_tests/membership_inference_attack/codelabs/codelab.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" /\u003eRun in Google Colab\u003c/a\u003e\n",
" </td>\n", " \u003c/td\u003e\n",
" <td>\n", " \u003ctd\u003e\n",
" <a target=\"_blank\" href=\"https://github.com/tensorflow/privacy/blob/master/tensorflow_privacy/privacy/privacy_tests/membership_inference_attack/codelabs/codelab.ipynb\"><img src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" />View source on GitHub</a>\n", " \u003ca target=\"_blank\" href=\"https://github.com/tensorflow/privacy/blob/master/tensorflow_privacy/privacy/privacy_tests/membership_inference_attack/codelabs/codelab.ipynb\"\u003e\u003cimg src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" /\u003eView source on GitHub\u003c/a\u003e\n",
" </td>\n", " \u003c/td\u003e\n",
"</table>" "\u003c/table\u003e"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": { "metadata": {
"colab_type": "text",
"id": "9rMuytY7Nn8P" "id": "9rMuytY7Nn8P"
}, },
"source": [ "source": [
@ -75,30 +68,35 @@
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": { "metadata": {
"colab_type": "text",
"id": "FUWqArj_q8vs" "id": "FUWqArj_q8vs"
}, },
"source": [ "source": [
"## Setup\n", "## Setup\n",
"First, set this notebook's runtime to use a GPU, under Runtime > Change runtime type > Hardware accelerator. Then, begin importing the necessary libraries." "First, set this notebook's runtime to use a GPU, under Runtime \u003e Change runtime type \u003e Hardware accelerator. Then, begin importing the necessary libraries."
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 1,
"metadata": { "metadata": {
"cellView": "form", "executionInfo": {
"colab": {}, "elapsed": 4130,
"colab_type": "code", "status": "ok",
"timestamp": 1729790860657,
"user": {
"displayName": "",
"userId": ""
},
"user_tz": 420
},
"id": "Lr1pwHcbralz" "id": "Lr1pwHcbralz"
}, },
"outputs": [], "outputs": [],
"source": [ "source": [
"# @title Import statements.\n", "# @title Import statements.\n",
"from typing import Text, Tuple\n",
"import numpy as np\n", "import numpy as np\n",
"from typing import Tuple, Text\n",
"from scipy import special\n", "from scipy import special\n",
"\n",
"import tensorflow as tf\n", "import tensorflow as tf\n",
"import tensorflow_datasets as tfds\n", "import tensorflow_datasets as tfds\n",
"\n", "\n",
@ -106,6 +104,7 @@
"tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)\n", "tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)\n",
"from warnings import simplefilter\n", "from warnings import simplefilter\n",
"from sklearn.exceptions import ConvergenceWarning\n", "from sklearn.exceptions import ConvergenceWarning\n",
"\n",
"simplefilter(action=\"ignore\", category=ConvergenceWarning)\n", "simplefilter(action=\"ignore\", category=ConvergenceWarning)\n",
"simplefilter(action=\"ignore\", category=FutureWarning)" "simplefilter(action=\"ignore\", category=FutureWarning)"
] ]
@ -113,7 +112,6 @@
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": { "metadata": {
"colab_type": "text",
"id": "ucw81ar6ru-6" "id": "ucw81ar6ru-6"
}, },
"source": [ "source": [
@ -125,8 +123,6 @@
"execution_count": null, "execution_count": null,
"metadata": { "metadata": {
"cellView": "both", "cellView": "both",
"colab": {},
"colab_type": "code",
"id": "zcqAmiGH90kl" "id": "zcqAmiGH90kl"
}, },
"outputs": [], "outputs": [],
@ -139,7 +135,6 @@
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": { "metadata": {
"colab_type": "text",
"id": "pBbcG86th_sW" "id": "pBbcG86th_sW"
}, },
"source": [ "source": [
@ -150,9 +145,7 @@
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": { "metadata": {
"cellView": "form", "collapsed": true,
"colab": {},
"colab_type": "code",
"id": "vCyOWyyhXLib" "id": "vCyOWyyhXLib"
}, },
"outputs": [], "outputs": [],
@ -169,10 +162,12 @@
"epochs = 100 # Privacy risks are especially visible with lots of epochs.\n", "epochs = 100 # Privacy risks are especially visible with lots of epochs.\n",
"\n", "\n",
"\n", "\n",
"def small_cnn(input_shape: Tuple[int],\n", "def small_cnn(\n",
" input_shape: Tuple[int],\n",
" num_classes: int,\n", " num_classes: int,\n",
" num_conv: int,\n", " num_conv: int,\n",
" activation: Text = 'relu') -> tf.keras.models.Sequential:\n", " activation: Text = 'relu',\n",
") -\u003e tf.keras.models.Sequential:\n",
" \"\"\"Setup a small CNN for image classification.\n", " \"\"\"Setup a small CNN for image classification.\n",
"\n", "\n",
" Args:\n", " Args:\n",
@ -200,12 +195,14 @@
"\n", "\n",
"print('Loading the dataset.')\n", "print('Loading the dataset.')\n",
"train_ds = tfds.as_numpy(\n", "train_ds = tfds.as_numpy(\n",
" tfds.load(dataset, split=tfds.Split.TRAIN, batch_size=-1))\n", " tfds.load(dataset, split=tfds.Split.TRAIN, batch_size=-1)\n",
")\n",
"test_ds = tfds.as_numpy(\n", "test_ds = tfds.as_numpy(\n",
" tfds.load(dataset, split=tfds.Split.TEST, batch_size=-1))\n", " tfds.load(dataset, split=tfds.Split.TEST, batch_size=-1)\n",
"x_train = train_ds['image'].astype('float32') / 255.\n", ")\n",
"x_train = train_ds['image'].astype('float32') / 255.0\n",
"y_train_indices = train_ds['label'][:, np.newaxis]\n", "y_train_indices = train_ds['label'][:, np.newaxis]\n",
"x_test = test_ds['image'].astype('float32') / 255.\n", "x_test = test_ds['image'].astype('float32') / 255.0\n",
"y_test_indices = test_ds['label'][:, np.newaxis]\n", "y_test_indices = test_ds['label'][:, np.newaxis]\n",
"\n", "\n",
"# Convert class vectors to binary class matrices.\n", "# Convert class vectors to binary class matrices.\n",
@ -215,7 +212,8 @@
"input_shape = x_train.shape[1:]\n", "input_shape = x_train.shape[1:]\n",
"\n", "\n",
"model = small_cnn(\n", "model = small_cnn(\n",
" input_shape, num_classes, num_conv=num_conv, activation=activation)\n", " input_shape, num_classes, num_conv=num_conv, activation=activation\n",
")\n",
"\n", "\n",
"print('learning rate %f', lr)\n", "print('learning rate %f', lr)\n",
"\n", "\n",
@ -230,14 +228,14 @@
" batch_size=batch_size,\n", " batch_size=batch_size,\n",
" epochs=epochs,\n", " epochs=epochs,\n",
" validation_data=(x_test, y_test),\n", " validation_data=(x_test, y_test),\n",
" shuffle=True)\n", " shuffle=True,\n",
")\n",
"print('Finished training.')" "print('Finished training.')"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": { "metadata": {
"colab_type": "text",
"id": "ee-zjGGGV1DC" "id": "ee-zjGGGV1DC"
}, },
"source": [ "source": [
@ -251,8 +249,6 @@
"execution_count": null, "execution_count": null,
"metadata": { "metadata": {
"cellView": "both", "cellView": "both",
"colab": {},
"colab_type": "code",
"id": "um9r0tSiPx4u" "id": "um9r0tSiPx4u"
}, },
"outputs": [], "outputs": [],
@ -270,14 +266,17 @@
"cce = tf.keras.backend.categorical_crossentropy\n", "cce = tf.keras.backend.categorical_crossentropy\n",
"constant = tf.keras.backend.constant\n", "constant = tf.keras.backend.constant\n",
"\n", "\n",
"loss_train = cce(constant(y_train), constant(prob_train), from_logits=False).numpy()\n", "loss_train = cce(\n",
"loss_test = cce(constant(y_test), constant(prob_test), from_logits=False).numpy()" " constant(y_train), constant(prob_train), from_logits=False\n",
").numpy()\n",
"loss_test = cce(\n",
" constant(y_test), constant(prob_test), from_logits=False\n",
").numpy()"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": { "metadata": {
"colab_type": "text",
"id": "QETxVOHLiHP4" "id": "QETxVOHLiHP4"
}, },
"source": [ "source": [
@ -292,44 +291,40 @@
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": { "metadata": {
"colab": {},
"colab_type": "code",
"id": "B8NIwhVwQT7I" "id": "B8NIwhVwQT7I"
}, },
"outputs": [], "outputs": [],
"source": [ "source": [
"from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackInputData\n", "from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackInputData\n",
"from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import SlicingSpec\n",
"from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackType\n", "from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackType\n",
"\n", "from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import SlicingSpec\n",
"import tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.plotting as plotting\n", "import tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.plotting as plotting\n",
"\n", "\n",
"labels_train = np.argmax(y_train, axis=1)\n", "labels_train = np.argmax(y_train, axis=1)\n",
"labels_test = np.argmax(y_test, axis=1)\n", "labels_test = np.argmax(y_test, axis=1)\n",
"\n", "\n",
"input = AttackInputData(\n", "attack_input = AttackInputData(\n",
" logits_train=logits_train,\n", " logits_train=logits_train,\n",
" logits_test=logits_test,\n", " logits_test=logits_test,\n",
" loss_train=loss_train,\n", " loss_train=loss_train,\n",
" loss_test=loss_test,\n", " loss_test=loss_test,\n",
" labels_train=labels_train,\n", " labels_train=labels_train,\n",
" labels_test = labels_test\n", " labels_test=labels_test,\n",
")\n", ")\n",
"\n", "\n",
"# Run several attacks for different data slices\n", "# Run several attacks for different data slices\n",
"attacks_result = mia.run_attacks(input,\n", "attacks_result = mia.run_attacks(\n",
" SlicingSpec(\n", " attack_input=attack_input,\n",
" entire_dataset = True,\n", " slicing_spec=SlicingSpec(\n",
" by_class = True,\n", " entire_dataset=True, by_class=True, by_classification_correctness=True\n",
" by_classification_correctness = True\n",
" ),\n", " ),\n",
" attack_types = [\n", " attack_types=[AttackType.THRESHOLD_ATTACK, AttackType.LOGISTIC_REGRESSION],\n",
" AttackType.THRESHOLD_ATTACK,\n", ")\n",
" AttackType.LOGISTIC_REGRESSION])\n",
"\n", "\n",
"# Plot the ROC curve of the best classifier\n", "# Plot the ROC curve of the best classifier\n",
"fig = plotting.plot_roc_curve(\n", "fig = plotting.plot_roc_curve(\n",
" attacks_result.get_result_with_max_auc().roc_curve)\n", " attacks_result.get_result_with_max_auc().roc_curve\n",
")\n",
"\n", "\n",
"# Print a user-friendly summary of the attacks\n", "# Print a user-friendly summary of the attacks\n",
"print(attacks_result.summary(by_slices=True))" "print(attacks_result.summary(by_slices=True))"
@ -338,7 +333,6 @@
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": { "metadata": {
"colab_type": "text",
"id": "E9zwsPGFujVq" "id": "E9zwsPGFujVq"
}, },
"source": [ "source": [
@ -353,9 +347,8 @@
], ],
"metadata": { "metadata": {
"colab": { "colab": {
"collapsed_sections": [],
"last_runtime": { "last_runtime": {
"build_target": "//learning/deepmind/public/tools/ml_python:ml_notebook", "build_target": "//learning/grp/tools/ml_python/gpu:ml_notebook",
"kind": "private" "kind": "private"
}, },
"name": "Membership inference codelab", "name": "Membership inference codelab",
@ -389,5 +382,5 @@
} }
}, },
"nbformat": 4, "nbformat": 4,
"nbformat_minor": 1 "nbformat_minor": 0
} }