forked from 626_privacy/tensorflow_privacy
Add files via upload
This commit is contained in:
parent
7b72e8a11b
commit
bcbb0c9553
3 changed files with 15 additions and 14 deletions
|
@ -43,6 +43,7 @@ flags.DEFINE_integer('epochs', 20, 'Number of epochs')
|
|||
flags.DEFINE_integer('max_mu', 2, 'GDP upper limit')
|
||||
flags.DEFINE_string('model_dir', None, 'Model directory')
|
||||
|
||||
sampling_batch = 256
|
||||
microbatches = 256
|
||||
num_examples = 29305
|
||||
|
||||
|
@ -136,11 +137,11 @@ def main(unused_argv):
|
|||
shuffle=False)
|
||||
|
||||
# Training loop.
|
||||
steps_per_epoch = num_examples // microbatches
|
||||
steps_per_epoch = num_examples // sampling_batch
|
||||
test_accuracy_list = []
|
||||
for epoch in range(1, FLAGS.epochs + 1):
|
||||
for step in range(steps_per_epoch):
|
||||
whether = np.random.random_sample(num_examples) > (1-microbatches/num_examples)
|
||||
whether = np.random.random_sample(num_examples) > (1-sampling_batch/num_examples)
|
||||
subsampling = [i for i in np.arange(num_examples) if whether[i]]
|
||||
global microbatches
|
||||
microbatches = len(subsampling)
|
||||
|
@ -162,8 +163,8 @@ def main(unused_argv):
|
|||
|
||||
# Compute the privacy budget expended so far.
|
||||
if FLAGS.dpsgd:
|
||||
eps = compute_eps_poisson(epoch, FLAGS.noise_multiplier, num_examples, 256, 1e-5)
|
||||
mu = compute_mu_poisson(epoch, FLAGS.noise_multiplier, num_examples, 256)
|
||||
eps = compute_eps_poisson(epoch, FLAGS.noise_multiplier, num_examples, sampling_batch, 1e-5)
|
||||
mu = compute_mu_poisson(epoch, FLAGS.noise_multiplier, num_examples, sampling_batch)
|
||||
print('For delta=1e-5, the current epsilon is: %.2f' % eps)
|
||||
print('For delta=1e-5, the current mu is: %.2f' % mu)
|
||||
|
||||
|
|
|
@ -43,7 +43,7 @@ flags.DEFINE_integer('epochs', 25, 'Number of epochs')
|
|||
flags.DEFINE_integer('max_mu', 2, 'GDP upper limit')
|
||||
flags.DEFINE_string('model_dir', None, 'Model directory')
|
||||
|
||||
|
||||
sampling_batch = 512
|
||||
microbatches = 512
|
||||
|
||||
max_features = 10000
|
||||
|
@ -137,12 +137,12 @@ def main(unused_argv):
|
|||
shuffle=False)
|
||||
|
||||
# Training loop.
|
||||
steps_per_epoch = num_examples // microbatches
|
||||
steps_per_epoch = num_examples // sampling_batch
|
||||
test_accuracy_list = []
|
||||
|
||||
for epoch in range(1, FLAGS.epochs + 1):
|
||||
for step in range(steps_per_epoch):
|
||||
whether = np.random.random_sample(num_examples) > (1-microbatches/num_examples)
|
||||
whether = np.random.random_sample(num_examples) > (1-sampling_batch/num_examples)
|
||||
subsampling = [i for i in np.arange(num_examples) if whether[i]]
|
||||
global microbatches
|
||||
microbatches = len(subsampling)
|
||||
|
@ -164,8 +164,8 @@ def main(unused_argv):
|
|||
|
||||
# Compute the privacy budget expended so far.
|
||||
if FLAGS.dpsgd:
|
||||
eps = compute_eps_poisson(epoch, FLAGS.noise_multiplier, num_examples, microbatches, 1e-5)
|
||||
mu = compute_mu_poisson(epoch, FLAGS.noise_multiplier, num_examples, microbatches)
|
||||
eps = compute_eps_poisson(epoch, FLAGS.noise_multiplier, num_examples, sampling_batch, 1e-5)
|
||||
mu = compute_mu_poisson(epoch, FLAGS.noise_multiplier, num_examples, sampling_batch)
|
||||
print('For delta=1e-5, the current epsilon is: %.2f' % eps)
|
||||
print('For delta=1e-5, the current mu is: %.2f' % mu)
|
||||
|
||||
|
|
|
@ -44,7 +44,7 @@ flags.DEFINE_integer('epochs', 25, 'Number of epochs')
|
|||
flags.DEFINE_integer('max_mu', 2, 'GDP upper limit')
|
||||
flags.DEFINE_string('model_dir', None, 'Model directory')
|
||||
|
||||
|
||||
sampling_batch = 10000
|
||||
microbatches = 10000
|
||||
num_examples = 800167
|
||||
|
||||
|
@ -171,11 +171,11 @@ def main(unused_argv):
|
|||
shuffle=False)
|
||||
|
||||
# Training loop.
|
||||
steps_per_epoch = num_examples // microbatches
|
||||
steps_per_epoch = num_examples // sampling_batch
|
||||
test_accuracy_list = []
|
||||
for epoch in range(1, FLAGS.epochs + 1):
|
||||
for step in range(steps_per_epoch):
|
||||
whether = np.random.random_sample(num_examples) > (1-microbatches/num_examples)
|
||||
whether = np.random.random_sample(num_examples) > (1-sampling_batch/num_examples)
|
||||
subsampling = [i for i in np.arange(num_examples) if whether[i]]
|
||||
global microbatches
|
||||
microbatches = len(subsampling)
|
||||
|
@ -197,8 +197,8 @@ def main(unused_argv):
|
|||
|
||||
# Compute the privacy budget expended so far.
|
||||
if FLAGS.dpsgd:
|
||||
eps = compute_eps_poisson(epoch, FLAGS.noise_multiplier, num_examples, microbatches, 1e-6)
|
||||
mu = compute_mu_poisson(epoch, FLAGS.noise_multiplier, num_examples, microbatches)
|
||||
eps = compute_eps_poisson(epoch, FLAGS.noise_multiplier, num_examples, sampling_batch, 1e-6)
|
||||
mu = compute_mu_poisson(epoch, FLAGS.noise_multiplier, num_examples, sampling_batch)
|
||||
print('For delta=1e-6, the current epsilon is: %.2f' % eps)
|
||||
print('For delta=1e-6, the current mu is: %.2f' % mu)
|
||||
|
||||
|
|
Loading…
Reference in a new issue