diff --git a/tensorflow_privacy/privacy/fast_gradient_clipping/clip_grads.py b/tensorflow_privacy/privacy/fast_gradient_clipping/clip_grads.py index 5bcf99a..feda803 100644 --- a/tensorflow_privacy/privacy/fast_gradient_clipping/clip_grads.py +++ b/tensorflow_privacy/privacy/fast_gradient_clipping/clip_grads.py @@ -21,7 +21,8 @@ of the approach given in https://arxiv.org/pdf/2009.03106.pdf (see the `compute_gradient_norms()` function). """ -from typing import List, Optional, Tuple +from collections.abc import Sequence +from typing import Optional import tensorflow as tf from tensorflow_privacy.privacy.fast_gradient_clipping import common_manip_utils @@ -74,7 +75,7 @@ def compute_gradient_norms( weight_batch: Optional[tf.Tensor] = None, per_example_loss_fn: Optional[type_aliases.LossFn] = None, num_microbatches: Optional[type_aliases.BatchSize] = None, - trainable_vars: Optional[List[tf.Variable]] = None, + trainable_vars: Optional[Sequence[tf.Variable]] = None, ): """Computes the per-example loss gradient norms for given data. @@ -219,7 +220,7 @@ def compute_clipped_gradients_and_outputs( weight_batch: Optional[tf.Tensor] = None, num_microbatches: Optional[type_aliases.BatchSize] = None, clipping_loss: Optional[type_aliases.LossFn] = None, -) -> Tuple[List[tf.Tensor], tf.Tensor, tf.Tensor]: +) -> tuple[Sequence[tf.Tensor], tf.Tensor, tf.Tensor]: """Computes the per-example clipped loss gradient and other useful outputs. Given a batch of observations `(x_batch, y_batch, weight_batch)`, the main diff --git a/tensorflow_privacy/privacy/fast_gradient_clipping/clip_grads_test.py b/tensorflow_privacy/privacy/fast_gradient_clipping/clip_grads_test.py index 5f6eda2..fe95362 100644 --- a/tensorflow_privacy/privacy/fast_gradient_clipping/clip_grads_test.py +++ b/tensorflow_privacy/privacy/fast_gradient_clipping/clip_grads_test.py @@ -12,7 +12,8 @@ # See the License for the specific language governing permissions and # limitations under the License. -from typing import Any, Dict, Optional, Text, Tuple +from collections.abc import Mapping, Sequence +from typing import Any, Optional from absl.testing import parameterized import tensorflow as tf @@ -22,9 +23,6 @@ from tensorflow_privacy.privacy.fast_gradient_clipping import layer_registry from tensorflow_privacy.privacy.fast_gradient_clipping import type_aliases -# ============================================================================== -# Helper functions and classes. -# ============================================================================== class DoubleDense(tf.keras.layers.Layer): """Generates two dense layers nested together.""" @@ -40,8 +38,8 @@ class DoubleDense(tf.keras.layers.Layer): def double_dense_layer_computation( layer_instance: tf.keras.layers.Layer, - input_args: Tuple[Any, ...], - input_kwargs: Dict[Text, Any], + input_args: Sequence[Any], + input_kwargs: Mapping[str, Any], tape: tf.GradientTape, num_microbatches: Optional[int], ) -> type_aliases.RegistryFunctionOutput: @@ -61,9 +59,6 @@ def double_dense_layer_computation( return [vars1, vars2], outputs, sqr_norm_fn -# ============================================================================== -# Main tests. -# ============================================================================== class DirectWeightsTest(tf.test.TestCase, parameterized.TestCase): @parameterized.product( diff --git a/tensorflow_privacy/privacy/fast_gradient_clipping/common_test_utils.py b/tensorflow_privacy/privacy/fast_gradient_clipping/common_test_utils.py index 804e877..06e139e 100644 --- a/tensorflow_privacy/privacy/fast_gradient_clipping/common_test_utils.py +++ b/tensorflow_privacy/privacy/fast_gradient_clipping/common_test_utils.py @@ -13,7 +13,8 @@ # limitations under the License. """A collection of common utility functions for unit testing.""" -from typing import Callable, List, Optional, Tuple +from collections.abc import Callable, MutableSequence, Sequence +from typing import Optional import numpy as np import tensorflow as tf @@ -108,8 +109,8 @@ def compute_true_gradient_norms( def get_model_from_generator( model_generator: type_aliases.ModelGenerator, layer_generator: type_aliases.LayerGenerator, - input_dims: List[int], - output_dims: List[int], + input_dims: Sequence[int], + output_dims: Sequence[int], is_eager: bool, ) -> tf.keras.Model: """Creates a simple model from input specifications.""" @@ -171,8 +172,8 @@ def get_computed_and_true_norms_from_model( def get_computed_and_true_norms( model_generator: type_aliases.ModelGenerator, layer_generator: type_aliases.LayerGenerator, - input_dims: List[int], - output_dims: List[int], + input_dims: Sequence[int], + output_dims: Sequence[int], per_example_loss_fn: Optional[Callable[[tf.Tensor, tf.Tensor], tf.Tensor]], num_microbatches: Optional[int], is_eager: bool, @@ -181,7 +182,7 @@ def get_computed_and_true_norms( rng_seed: int = 777, registry: layer_registry.LayerRegistry = None, partial: bool = False, -) -> Tuple[tf.Tensor, tf.Tensor]: +) -> tuple[tf.Tensor, tf.Tensor]: """Obtains the true and computed gradient norms for a model and batch input. Helpful testing wrapper function used to avoid code duplication. @@ -245,8 +246,8 @@ def reshape_and_sum(tensor: tf.Tensor) -> tf.Tensor: # ============================================================================== def make_one_layer_functional_model( layer_generator: type_aliases.LayerGenerator, - input_dims: List[int], - output_dims: List[int], + input_dims: Sequence[int], + output_dims: Sequence[int], ) -> tf.keras.Model: """Creates a 1-layer sequential model.""" inputs = tf.keras.Input(shape=input_dims) @@ -258,8 +259,8 @@ def make_one_layer_functional_model( def make_two_layer_functional_model( layer_generator: type_aliases.LayerGenerator, - input_dims: List[int], - output_dims: List[int], + input_dims: Sequence[int], + output_dims: Sequence[int], ) -> tf.keras.Model: """Creates a 2-layer sequential model.""" inputs = tf.keras.Input(shape=input_dims) @@ -272,8 +273,8 @@ def make_two_layer_functional_model( def make_two_tower_model( layer_generator: type_aliases.LayerGenerator, - input_dims: List[int], - output_dims: List[int], + input_dims: Sequence[int], + output_dims: Sequence[int], ) -> tf.keras.Model: """Creates a 2-layer 2-input functional model.""" inputs1 = tf.keras.Input(shape=input_dims) @@ -290,8 +291,8 @@ def make_two_tower_model( def make_bow_model( layer_generator: type_aliases.LayerGenerator, - input_dims: List[int], - output_dims: List[int], + input_dims: Sequence[int], + output_dims: Sequence[int], ) -> tf.keras.Model: """Creates a simple embedding bow model.""" inputs = tf.keras.Input(shape=input_dims, dtype=tf.int32) @@ -315,8 +316,8 @@ def make_bow_model( def make_dense_bow_model( layer_generator: type_aliases.LayerGenerator, - input_dims: List[int], - output_dims: List[int], + input_dims: Sequence[int], + output_dims: Sequence[int], ) -> tf.keras.Model: """Creates an embedding bow model with a `Dense` layer.""" inputs = tf.keras.Input(shape=input_dims, dtype=tf.int32) @@ -341,8 +342,8 @@ def make_dense_bow_model( def make_weighted_bow_model( layer_generator: type_aliases.LayerGenerator, - input_dims: List[int], - output_dims: List[int], + input_dims: MutableSequence[int], + output_dims: MutableSequence[int], ) -> tf.keras.Model: """Creates a weighted embedding bow model.""" # NOTE: This model only accepts dense input tensors. @@ -353,10 +354,9 @@ def make_weighted_bow_model( emb_layer = layer_generator(input_dims, output_dims) if len(output_dims) != 1: raise ValueError('Expected `output_dims` to be of size 1.') - output_dim = output_dims[0] feature_embs = emb_layer(inputs) # Use deterministic weights to avoid seeding issues on TPUs. - feature_shape = input_dims + [output_dim] + feature_shape = input_dims + output_dims feature_weights = tf.expand_dims( tf.reshape( tf.range(np.product(feature_shape), dtype=tf.float32), diff --git a/tensorflow_privacy/privacy/fast_gradient_clipping/gradient_clipping_utils.py b/tensorflow_privacy/privacy/fast_gradient_clipping/gradient_clipping_utils.py index 6564f9d..3e9e996 100644 --- a/tensorflow_privacy/privacy/fast_gradient_clipping/gradient_clipping_utils.py +++ b/tensorflow_privacy/privacy/fast_gradient_clipping/gradient_clipping_utils.py @@ -13,7 +13,8 @@ # limitations under the License. """Utility functions that help in the computation of per-example gradient norms.""" -from typing import Any, List, Optional, Set, Tuple +from collections.abc import Sequence, Set +from typing import Any, Optional from absl import logging import tensorflow as tf @@ -36,7 +37,7 @@ def model_forward_pass( input_model: tf.keras.Model, inputs: type_aliases.PackedTensors, generator_fn: type_aliases.GeneratorFunction = None, -) -> Tuple[type_aliases.PackedTensors, List[Any]]: +) -> tuple[type_aliases.PackedTensors, Sequence[Any]]: """Does a forward pass of a model and returns useful intermediates. NOTE: the graph traversal algorithm is an adaptation of the logic in the @@ -149,7 +150,7 @@ def add_aggregate_noise( batch_size: tf.Tensor, l2_norm_clip: float, noise_multiplier: float, -) -> List[tf.Tensor]: +) -> Sequence[tf.Tensor]: """Adds noise to a collection of clipped gradients. The magnitude of the noise depends on the aggregation strategy of the diff --git a/tensorflow_privacy/privacy/fast_gradient_clipping/gradient_clipping_utils_test.py b/tensorflow_privacy/privacy/fast_gradient_clipping/gradient_clipping_utils_test.py index 68b61ef..7069273 100644 --- a/tensorflow_privacy/privacy/fast_gradient_clipping/gradient_clipping_utils_test.py +++ b/tensorflow_privacy/privacy/fast_gradient_clipping/gradient_clipping_utils_test.py @@ -16,7 +16,6 @@ from typing import Any from absl.testing import parameterized import tensorflow as tf - from tensorflow_privacy.privacy.fast_gradient_clipping import gradient_clipping_utils @@ -90,7 +89,7 @@ class ModelForwardPassTest(tf.test.TestCase, parameterized.TestCase): num_dims = 3 num_inputs = 1 if input_packing_type is None else 2 num_outputs = 1 if output_packing_type is None else 2 - sample_inputs = [tf.keras.Input((num_dims,)) for i in range(num_inputs)] + sample_inputs = [tf.keras.Input((num_dims,)) for _ in range(num_inputs)] temp_sum = tf.stack(sample_inputs, axis=0) sample_outputs = [ tf.multiply(temp_sum, float(i + 1.0)) for i in range(num_outputs) diff --git a/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/dense.py b/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/dense.py index 8bf3724..7c49c5b 100644 --- a/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/dense.py +++ b/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/dense.py @@ -13,7 +13,8 @@ # limitations under the License. """Fast clipping function for `tf.keras.layers.Dense`.""" -from typing import Any, Mapping, Tuple, Union +from collections.abc import Mapping, Sequence +from typing import Any, Optional import tensorflow as tf from tensorflow_privacy.privacy.fast_gradient_clipping import common_manip_utils from tensorflow_privacy.privacy.fast_gradient_clipping import type_aliases @@ -21,10 +22,10 @@ from tensorflow_privacy.privacy.fast_gradient_clipping import type_aliases def dense_layer_computation( layer_instance: tf.keras.layers.Dense, - input_args: Tuple[Any, ...], + input_args: Sequence[Any], input_kwargs: Mapping[str, Any], tape: tf.GradientTape, - num_microbatches: Union[tf.Tensor, None] = None, + num_microbatches: Optional[tf.Tensor] = None, ) -> type_aliases.RegistryFunctionOutput: """Registry function for `tf.keras.layers.Dense`. diff --git a/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/dense_test.py b/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/dense_test.py index 3bde1ad..394d1d0 100644 --- a/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/dense_test.py +++ b/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/dense_test.py @@ -19,11 +19,7 @@ from tensorflow_privacy.privacy.fast_gradient_clipping import layer_registry from tensorflow_privacy.privacy.fast_gradient_clipping.registry_functions import dense -# ============================================================================== -# Helper functions. -# ============================================================================== def get_dense_layer_generators(): - def sigmoid_dense_layer(units): return tf.keras.layers.Dense(units, activation='sigmoid') @@ -50,14 +46,12 @@ def get_dense_layer_registries(): } -# ============================================================================== -# Main tests. -# ============================================================================== class GradNormTest(tf.test.TestCase, parameterized.TestCase): def setUp(self): super().setUp() self.strategy = tf.distribute.get_strategy() + self.using_tpu = False @parameterized.product( model_name=list(get_dense_model_generators().keys()), @@ -112,8 +106,7 @@ class GradNormTest(tf.test.TestCase, parameterized.TestCase): ) # TPUs can only run `tf.function`-decorated functions. - using_tpu = isinstance(self.strategy, tf.distribute.TPUStrategy) - if using_tpu: + if self.using_tpu: test_op = tf.function(test_op, jit_compile=True, autograph=False) # TPUs use lower precision than CPUs, so we relax our criterion. @@ -127,8 +120,8 @@ class GradNormTest(tf.test.TestCase, parameterized.TestCase): # which is a reasonable level of error for computing gradient norms. # Other trials also give an absolute (resp. relative) error of around # 0.05 (resp. 0.0015). - rtol = 1e-2 if using_tpu else 1e-3 - atol = 1e-1 if using_tpu else 1e-2 + rtol = 1e-2 if self.using_tpu else 1e-3 + atol = 1e-1 if self.using_tpu else 1e-2 for x_batch, weight_batch in zip(x_batches, weight_batches): batch_size = x_batch.shape[0] @@ -139,7 +132,7 @@ class GradNormTest(tf.test.TestCase, parameterized.TestCase): test_op, args=(x_batch, weight_batch) ) # TPUs return replica contexts, which must be unwrapped. - if using_tpu: + if self.using_tpu: common_test_utils.assert_replica_values_are_close(self, computed_norms) common_test_utils.assert_replica_values_are_close(self, true_norms) computed_norms = computed_norms.values[0] diff --git a/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/dense_tpu_test.py b/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/dense_tpu_test.py index d3ae939..1832c73 100644 --- a/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/dense_tpu_test.py +++ b/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/dense_tpu_test.py @@ -20,9 +20,10 @@ from tensorflow_privacy.privacy.fast_gradient_clipping.registry_functions import class GradNormTpuTest(dense_test.GradNormTest): def setUp(self): - super().setUp() + super(dense_test.GradNormTest, self).setUp() self.strategy = ctu.create_tpu_strategy() self.assertIn('TPU', self.strategy.extended.worker_devices[0]) + self.using_tpu = True if __name__ == '__main__': diff --git a/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/embedding.py b/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/embedding.py index 495d74e..8d14646 100644 --- a/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/embedding.py +++ b/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/embedding.py @@ -13,7 +13,8 @@ # limitations under the License. """Fast clipping function for `tf.keras.layers.Embedding`.""" -from typing import Any, Mapping, Tuple, Union +from collections.abc import Mapping, Sequence +from typing import Any, Optional import tensorflow as tf from tensorflow_privacy.privacy.fast_gradient_clipping import type_aliases from tensorflow_privacy.privacy.fast_gradient_clipping.registry_functions import registry_function_utils @@ -21,10 +22,10 @@ from tensorflow_privacy.privacy.fast_gradient_clipping.registry_functions import def embedding_layer_computation( layer_instance: tf.keras.layers.Embedding, - input_args: Tuple[Any, ...], + input_args: Sequence[Any], input_kwargs: Mapping[str, Any], tape: tf.GradientTape, - num_microbatches: Union[tf.Tensor, None] = None, + num_microbatches: Optional[tf.Tensor] = None, ) -> type_aliases.RegistryFunctionOutput: """Registry function for `tf.keras.layers.Embedding`. diff --git a/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/embedding_test.py b/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/embedding_test.py index 374afd6..a95cb74 100644 --- a/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/embedding_test.py +++ b/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/embedding_test.py @@ -20,9 +20,6 @@ from tensorflow_privacy.privacy.fast_gradient_clipping.registry_functions import from tensorflow_privacy.privacy.fast_gradient_clipping.registry_functions import embedding -# ============================================================================== -# Helper functions. -# ============================================================================== def get_embedding_model_generators(): return { 'bow1': common_test_utils.make_bow_model, @@ -59,14 +56,12 @@ def get_embedding_layer_registries(): } -# ============================================================================== -# Main tests. -# ============================================================================== class GradNormTest(tf.test.TestCase, parameterized.TestCase): def setUp(self): super().setUp() self.strategy = tf.distribute.get_strategy() + self.using_tpu = False # TODO(weiweikong): Test sparse input tensors when the GitHub CI environment # supports them for embeddings. @@ -101,13 +96,12 @@ class GradNormTest(tf.test.TestCase, parameterized.TestCase): # The following are invalid test combinations and, hence, are skipped. batch_size = embed_indices.shape[0] - using_tpu = isinstance(self.strategy, tf.distribute.TPUStrategy) if ( (num_microbatches is not None and batch_size % num_microbatches != 0) or (model_name == 'weighted_bow1' and is_ragged) or ( # Current clipping ops do not have corresponding TPU kernels. - using_tpu + self.using_tpu and is_ragged ) ): @@ -139,7 +133,7 @@ class GradNormTest(tf.test.TestCase, parameterized.TestCase): ) # TPUs can only run `tf.function`-decorated functions. - if using_tpu: + if self.using_tpu: test_op = tf.function(test_op, autograph=False) # Set up the device ops and run the test. @@ -147,7 +141,7 @@ class GradNormTest(tf.test.TestCase, parameterized.TestCase): test_op, args=(embed_indices,) ) # TPUs return replica contexts, which must be unwrapped. - if using_tpu: + if self.using_tpu: common_test_utils.assert_replica_values_are_close(self, computed_norms) common_test_utils.assert_replica_values_are_close(self, true_norms) computed_norms = computed_norms.values[0] diff --git a/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/embedding_tpu_test.py b/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/embedding_tpu_test.py index 1b9b393..9411d61 100644 --- a/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/embedding_tpu_test.py +++ b/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/embedding_tpu_test.py @@ -20,9 +20,10 @@ from tensorflow_privacy.privacy.fast_gradient_clipping.registry_functions import class GradNormTpuTest(embedding_test.GradNormTest): def setUp(self): - super().setUp() + super(embedding_test.GradNormTest, self).setUp() self.strategy = common_test_utils.create_tpu_strategy() self.assertIn('TPU', self.strategy.extended.worker_devices[0]) + self.using_tpu = True if __name__ == '__main__': diff --git a/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/layer_normalization.py b/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/layer_normalization.py index 91338a9..f9248de 100644 --- a/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/layer_normalization.py +++ b/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/layer_normalization.py @@ -13,21 +13,19 @@ # limitations under the License. """Fast clipping function for `tf.keras.layers.LayerNormalization`.""" -from typing import Any, Mapping, Tuple, Union +from collections.abc import Mapping, Sequence +from typing import Any, Optional import tensorflow as tf from tensorflow_privacy.privacy.fast_gradient_clipping import common_manip_utils from tensorflow_privacy.privacy.fast_gradient_clipping import type_aliases -# ============================================================================== -# Supported Keras layers -# ============================================================================== def layer_normalization_computation( layer_instance: tf.keras.layers.LayerNormalization, - input_args: Tuple[Any, ...], + input_args: Sequence[Any], input_kwargs: Mapping[str, Any], tape: tf.GradientTape, - num_microbatches: Union[tf.Tensor, None] = None, + num_microbatches: Optional[tf.Tensor] = None, ) -> type_aliases.RegistryFunctionOutput: """Registry function for `tf.keras.layers.LayerNormalization`. diff --git a/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/layer_normalization_test.py b/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/layer_normalization_test.py index c2b6429..c0b18d8 100644 --- a/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/layer_normalization_test.py +++ b/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/layer_normalization_test.py @@ -21,9 +21,6 @@ from tensorflow_privacy.privacy.fast_gradient_clipping.registry_functions import from tensorflow_privacy.privacy.fast_gradient_clipping.registry_functions import layer_normalization -# ============================================================================== -# Helper functions. -# ============================================================================== def get_layer_norm_layer_generators(): return { 'defaults': lambda x: tf.keras.layers.LayerNormalization(axis=x), @@ -73,14 +70,12 @@ def get_layer_norm_registries(): } -# ============================================================================== -# Main tests. -# ============================================================================== class GradNormTest(tf.test.TestCase, parameterized.TestCase): def setUp(self): super().setUp() self.strategy = tf.distribute.get_strategy() + self.using_tpu = False @parameterized.product( model_name=list(get_layer_norm_model_generators().keys()), @@ -130,14 +125,13 @@ class GradNormTest(tf.test.TestCase, parameterized.TestCase): ) # TPUs can only run `tf.function`-decorated functions. - using_tpu = isinstance(self.strategy, tf.distribute.TPUStrategy) - if using_tpu: + if self.using_tpu: test_op = tf.function(test_op, jit_compile=True, autograph=False) # TPUs use lower precision than CPUs, so we relax our criterion (see # `dense_test.py` for additional discussions). - rtol = 1e-2 if using_tpu else 1e-3 - atol = 1e-1 if using_tpu else 1e-2 + rtol = 1e-2 if self.using_tpu else 1e-3 + atol = 1e-1 if self.using_tpu else 1e-2 # Each batched input is a reshape of a `tf.range()` call. batch_size = 2 @@ -148,7 +142,7 @@ class GradNormTest(tf.test.TestCase, parameterized.TestCase): # Set up the device ops and run the test. computed_norms, true_norms = self.strategy.run(test_op, args=(x_batch,)) # TPUs return replica contexts, which must be unwrapped. - if using_tpu: + if self.using_tpu: common_test_utils.assert_replica_values_are_close(self, computed_norms) common_test_utils.assert_replica_values_are_close(self, true_norms) computed_norms = computed_norms.values[0] diff --git a/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/layer_normalization_tpu_test.py b/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/layer_normalization_tpu_test.py index 6891d60..d92b38f 100644 --- a/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/layer_normalization_tpu_test.py +++ b/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/layer_normalization_tpu_test.py @@ -20,9 +20,10 @@ from tensorflow_privacy.privacy.fast_gradient_clipping.registry_functions import class GradNormTpuTest(layer_normalization_test.GradNormTest): def setUp(self): - super().setUp() + super(layer_normalization_test.GradNormTest, self).setUp() self.strategy = ctu.create_tpu_strategy() self.assertIn('TPU', self.strategy.extended.worker_devices[0]) + self.using_tpu = True if __name__ == '__main__': diff --git a/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/nlp_on_device_embedding.py b/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/nlp_on_device_embedding.py index 084c4eb..c4dc21d 100644 --- a/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/nlp_on_device_embedding.py +++ b/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/nlp_on_device_embedding.py @@ -13,7 +13,8 @@ # limitations under the License. """Fast clipping function for `tfm.nlp.layers.OnDeviceEmbedding`.""" -from typing import Any, Dict, Optional, Tuple +from collections.abc import Mapping, Sequence +from typing import Any, Optional import tensorflow as tf from tensorflow_privacy.privacy.fast_gradient_clipping import type_aliases from tensorflow_privacy.privacy.fast_gradient_clipping.registry_functions import registry_function_utils @@ -21,8 +22,8 @@ from tensorflow_privacy.privacy.fast_gradient_clipping.registry_functions import def nlp_on_device_embedding_layer_computation( layer_instance: tf.keras.layers.Layer, - input_args: Tuple[Any, ...], - input_kwargs: Dict[str, Any], + input_args: Sequence[Any], + input_kwargs: Mapping[str, Any], tape: tf.GradientTape, num_microbatches: Optional[tf.Tensor] = None, ) -> type_aliases.RegistryFunctionOutput: diff --git a/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/nlp_on_device_embedding_test.py b/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/nlp_on_device_embedding_test.py index 41f5914..4238482 100644 --- a/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/nlp_on_device_embedding_test.py +++ b/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/nlp_on_device_embedding_test.py @@ -21,9 +21,6 @@ from tensorflow_privacy.privacy.fast_gradient_clipping.registry_functions import from tensorflow_privacy.privacy.fast_gradient_clipping.registry_functions import nlp_on_device_embedding -# ============================================================================== -# Helper functions. -# ============================================================================== def get_nlp_on_device_embedding_model_generators(): return { 'bow1': common_test_utils.make_bow_model, @@ -49,30 +46,26 @@ def get_nlp_on_device_embedding_layer_registries(): dbl_registry.insert(tf.keras.layers.Dense, dense.dense_layer_computation) dbl_registry.insert( tfm.nlp.layers.OnDeviceEmbedding, - nlp_on_device_embedding.nlp_on_device_embedding_layer_computation + nlp_on_device_embedding.nlp_on_device_embedding_layer_computation, ) return { 'embed_and_dense': dbl_registry, } -# ============================================================================== -# Main tests. -# ============================================================================== class GradNormTest(tf.test.TestCase, parameterized.TestCase): def setUp(self): super().setUp() self.strategy = tf.distribute.get_strategy() + self.using_tpu = False # TODO(weiweikong): Test sparse input tensors when the GitHub CI environment # supports them for embeddings. @parameterized.product( input_data=get_nlp_on_device_embedding_inputs(), scale_factor=[None, 0.5, 1.0], - model_name=list( - get_nlp_on_device_embedding_model_generators().keys() - ), + model_name=list(get_nlp_on_device_embedding_model_generators().keys()), output_dim=[2], layer_registry_name=list( get_nlp_on_device_embedding_layer_registries().keys() @@ -97,7 +90,6 @@ class GradNormTest(tf.test.TestCase, parameterized.TestCase): # The following are invalid test combinations and, hence, are skipped. batch_size = embed_indices.shape[0] - using_tpu = isinstance(self.strategy, tf.distribute.TPUStrategy) if num_microbatches is not None and batch_size % num_microbatches != 0: return @@ -106,9 +98,7 @@ class GradNormTest(tf.test.TestCase, parameterized.TestCase): def embed_layer_generator(_, output_dims): return tfm.nlp.layers.OnDeviceEmbedding( - 10, - *output_dims, - scale_factor=scale_factor + 10, *output_dims, scale_factor=scale_factor ) model = common_test_utils.get_model_from_generator( @@ -137,7 +127,7 @@ class GradNormTest(tf.test.TestCase, parameterized.TestCase): ) # TPUs can only run `tf.function`-decorated functions. - if using_tpu: + if self.using_tpu: test_op = tf.function(test_op, autograph=False) # Set up the device ops and run the test. @@ -145,7 +135,7 @@ class GradNormTest(tf.test.TestCase, parameterized.TestCase): test_op, args=(embed_indices,) ) # TPUs return replica contexts, which must be unwrapped. - if using_tpu: + if self.using_tpu: common_test_utils.assert_replica_values_are_close(self, computed_norms) common_test_utils.assert_replica_values_are_close(self, true_norms) computed_norms = computed_norms.values[0] diff --git a/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/nlp_on_device_embedding_tpu_test.py b/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/nlp_on_device_embedding_tpu_test.py index 2a447b4..283a671 100644 --- a/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/nlp_on_device_embedding_tpu_test.py +++ b/tensorflow_privacy/privacy/fast_gradient_clipping/registry_functions/nlp_on_device_embedding_tpu_test.py @@ -20,9 +20,10 @@ from tensorflow_privacy.privacy.fast_gradient_clipping.registry_functions import class GradNormTpuTest(nlp_on_device_embedding_test.GradNormTest): def setUp(self): - super().setUp() + super(nlp_on_device_embedding_test.GradNormTest, self).setUp() self.strategy = common_test_utils.create_tpu_strategy() self.assertIn('TPU', self.strategy.extended.worker_devices[0]) + self.using_tpu = True if __name__ == '__main__': diff --git a/tensorflow_privacy/privacy/fast_gradient_clipping/type_aliases.py b/tensorflow_privacy/privacy/fast_gradient_clipping/type_aliases.py index 4b460b3..1e602a0 100644 --- a/tensorflow_privacy/privacy/fast_gradient_clipping/type_aliases.py +++ b/tensorflow_privacy/privacy/fast_gradient_clipping/type_aliases.py @@ -13,12 +13,13 @@ # limitations under the License. """A collection of type aliases used throughout the clipping library.""" -from typing import Any, Callable, Dict, Iterable, List, Mapping, Optional, Tuple, Union +from collections.abc import Callable, Iterable, Mapping, Sequence +from typing import Any, Optional, Union import tensorflow as tf # Tensorflow aliases. -PackedTensors = Union[tf.Tensor, Iterable[tf.Tensor], Dict[str, tf.Tensor]] +PackedTensors = Union[tf.Tensor, Iterable[tf.Tensor], Mapping[str, tf.Tensor]] InputTensors = PackedTensors @@ -31,12 +32,12 @@ LossFn = Callable[..., tf.Tensor] # Layer Registry aliases. SquareNormFunction = Callable[[OutputTensors], tf.Tensor] -RegistryFunctionOutput = Tuple[Any, OutputTensors, SquareNormFunction] +RegistryFunctionOutput = tuple[Any, OutputTensors, SquareNormFunction] RegistryFunction = Callable[ [ Any, - Tuple[Any, ...], + tuple[Any, ...], Mapping[str, Any], tf.GradientTape, Union[tf.Tensor, None], @@ -45,11 +46,11 @@ RegistryFunction = Callable[ ] # Clipping aliases. -GeneratorFunction = Optional[Callable[[Any, Tuple, Dict], Tuple[Any, Any]]] +GeneratorFunction = Optional[Callable[[Any, tuple, Mapping], tuple[Any, Any]]] # Testing aliases. LayerGenerator = Callable[[int, int], tf.keras.layers.Layer] ModelGenerator = Callable[ - [LayerGenerator, List[int], List[int]], tf.keras.Model + [LayerGenerator, Sequence[int], Sequence[int]], tf.keras.Model ]