forked from 626_privacy/tensorflow_privacy
Ensuring pylint is 10/10
This commit is contained in:
parent
b03eb6914b
commit
c05c2aa0d4
5 changed files with 105 additions and 350 deletions
|
@ -17,9 +17,9 @@ from distutils.version import LooseVersion
|
|||
import tensorflow as tf
|
||||
|
||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||
raise ImportError("Please upgrade your version of tensorflow from: {0} "
|
||||
"to at least 2.0.0 to use privacy/bolton".format(
|
||||
LooseVersion(tf.__version__)))
|
||||
raise ImportError("Please upgrade your version "
|
||||
"of tensorflow from: {0} to at least 2.0.0 to "
|
||||
"use privacy/bolton".format(LooseVersion(tf.__version__)))
|
||||
if hasattr(sys, 'skip_tf_privacy_import'): # Useful for standalone scripts.
|
||||
pass
|
||||
else:
|
||||
|
|
|
@ -160,11 +160,11 @@ class StrongConvexHuber(losses.Loss, StrongConvexMixin):
|
|||
one = tf.constant(1, dtype=self.dtype)
|
||||
four = tf.constant(4, dtype=self.dtype)
|
||||
|
||||
if z > one + h:
|
||||
if z > one + h: # pylint: disable=no-else-return
|
||||
return _ops.convert_to_tensor_v2(0, dtype=self.dtype)
|
||||
elif tf.math.abs(one - z) <= h:
|
||||
return one / (four * h) * tf.math.pow(one + h - z, 2)
|
||||
return one - z # elif: z < one - h
|
||||
return one - z
|
||||
|
||||
def radius(self):
|
||||
"""See super class."""
|
||||
|
@ -300,281 +300,3 @@ class StrongConvexBinaryCrossentropy(
|
|||
set to half the 0.5 * reg_lambda.
|
||||
"""
|
||||
return L1L2(l2=self.reg_lambda/2)
|
||||
|
||||
# class StrongConvexSparseCategoricalCrossentropy(
|
||||
# losses.CategoricalCrossentropy,
|
||||
# StrongConvexMixin
|
||||
# ):
|
||||
# """
|
||||
# Strong Convex version of CategoricalCrossentropy loss using l2 weight
|
||||
# regularization.
|
||||
# """
|
||||
#
|
||||
# def __init__(self,
|
||||
# reg_lambda: float,
|
||||
# C: float,
|
||||
# radius_constant: float,
|
||||
# from_logits: bool = True,
|
||||
# label_smoothing: float = 0,
|
||||
# reduction: str = losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE,
|
||||
# name: str = 'binarycrossentropy',
|
||||
# dtype=tf.float32):
|
||||
# """
|
||||
# Args:
|
||||
# reg_lambda: Weight regularization constant
|
||||
# C: Penalty parameter C of the loss term
|
||||
# radius_constant: constant defining the length of the radius
|
||||
# reduction: reduction type to use. See super class
|
||||
# label_smoothing: amount of smoothing to perform on labels
|
||||
# relaxation of trust in labels, e.g. (1 -> 1-x, 0 -> 0+x)
|
||||
# name: Name of the loss instance
|
||||
# dtype: tf datatype to use for tensor conversions.
|
||||
# """
|
||||
# if reg_lambda <= 0:
|
||||
# raise ValueError("reg lambda: {0} must be positive".format(reg_lambda))
|
||||
# if C <= 0:
|
||||
# raise ValueError('c: {0}, should be >= 0'.format(C))
|
||||
# if radius_constant <= 0:
|
||||
# raise ValueError('radius_constant: {0}, should be >= 0'.format(
|
||||
# radius_constant
|
||||
# ))
|
||||
#
|
||||
# self.C = C
|
||||
# self.dtype = dtype
|
||||
# self.reg_lambda = tf.constant(reg_lambda, dtype=self.dtype)
|
||||
# super(StrongConvexSparseCategoricalCrossentropy, self).__init__(
|
||||
# reduction=reduction,
|
||||
# name=name,
|
||||
# from_logits=from_logits,
|
||||
# label_smoothing=label_smoothing,
|
||||
# )
|
||||
# self.radius_constant = radius_constant
|
||||
#
|
||||
# def call(self, y_true, y_pred):
|
||||
# """Compute loss
|
||||
#
|
||||
# Args:
|
||||
# y_true: Ground truth values.
|
||||
# y_pred: The predicted values.
|
||||
#
|
||||
# Returns:
|
||||
# Loss values per sample.
|
||||
# """
|
||||
# loss = super()
|
||||
# loss = loss * self.C
|
||||
# return loss
|
||||
#
|
||||
# def radius(self):
|
||||
# """See super class.
|
||||
# """
|
||||
# return self.radius_constant / self.reg_lambda
|
||||
#
|
||||
# def gamma(self):
|
||||
# """See super class.
|
||||
# """
|
||||
# return self.reg_lambda
|
||||
#
|
||||
# def beta(self, class_weight):
|
||||
# """See super class.
|
||||
# """
|
||||
# max_class_weight = self.max_class_weight(class_weight, self.dtype)
|
||||
# return self.C * max_class_weight + self.reg_lambda
|
||||
#
|
||||
# def lipchitz_constant(self, class_weight):
|
||||
# """See super class.
|
||||
# """
|
||||
# max_class_weight = self.max_class_weight(class_weight, self.dtype)
|
||||
# return self.C * max_class_weight + self.reg_lambda * self.radius()
|
||||
#
|
||||
# def kernel_regularizer(self):
|
||||
# """
|
||||
# l2 loss using reg_lambda as the l2 term (as desired). Required for
|
||||
# this loss function to be strongly convex.
|
||||
# :return:
|
||||
# """
|
||||
# return L1L2(l2=self.reg_lambda)
|
||||
#
|
||||
# class StrongConvexSparseCategoricalCrossentropy(
|
||||
# losses.SparseCategoricalCrossentropy,
|
||||
# StrongConvexMixin
|
||||
# ):
|
||||
# """
|
||||
# Strong Convex version of SparseCategoricalCrossentropy loss using l2 weight
|
||||
# regularization.
|
||||
# """
|
||||
#
|
||||
# def __init__(self,
|
||||
# reg_lambda: float,
|
||||
# C: float,
|
||||
# radius_constant: float,
|
||||
# from_logits: bool = True,
|
||||
# label_smoothing: float = 0,
|
||||
# reduction: str = losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE,
|
||||
# name: str = 'binarycrossentropy',
|
||||
# dtype=tf.float32):
|
||||
# """
|
||||
# Args:
|
||||
# reg_lambda: Weight regularization constant
|
||||
# C: Penalty parameter C of the loss term
|
||||
# radius_constant: constant defining the length of the radius
|
||||
# reduction: reduction type to use. See super class
|
||||
# label_smoothing: amount of smoothing to perform on labels
|
||||
# relaxation of trust in labels, e.g. (1 -> 1-x, 0 -> 0+x)
|
||||
# name: Name of the loss instance
|
||||
# dtype: tf datatype to use for tensor conversions.
|
||||
# """
|
||||
# if reg_lambda <= 0:
|
||||
# raise ValueError("reg lambda: {0} must be positive".format(reg_lambda))
|
||||
# if C <= 0:
|
||||
# raise ValueError('c: {0}, should be >= 0'.format(C))
|
||||
# if radius_constant <= 0:
|
||||
# raise ValueError('radius_constant: {0}, should be >= 0'.format(
|
||||
# radius_constant
|
||||
# ))
|
||||
#
|
||||
# self.C = C
|
||||
# self.dtype = dtype
|
||||
# self.reg_lambda = tf.constant(reg_lambda, dtype=self.dtype)
|
||||
# super(StrongConvexHuber, self).__init__(reduction=reduction,
|
||||
# name=name,
|
||||
# from_logits=from_logits,
|
||||
# label_smoothing=label_smoothing,
|
||||
# )
|
||||
# self.radius_constant = radius_constant
|
||||
#
|
||||
# def call(self, y_true, y_pred):
|
||||
# """Compute loss
|
||||
#
|
||||
# Args:
|
||||
# y_true: Ground truth values.
|
||||
# y_pred: The predicted values.
|
||||
#
|
||||
# Returns:
|
||||
# Loss values per sample.
|
||||
# """
|
||||
# loss = super()
|
||||
# loss = loss * self.C
|
||||
# return loss
|
||||
#
|
||||
# def radius(self):
|
||||
# """See super class.
|
||||
# """
|
||||
# return self.radius_constant / self.reg_lambda
|
||||
#
|
||||
# def gamma(self):
|
||||
# """See super class.
|
||||
# """
|
||||
# return self.reg_lambda
|
||||
#
|
||||
# def beta(self, class_weight):
|
||||
# """See super class.
|
||||
# """
|
||||
# max_class_weight = self.max_class_weight(class_weight, self.dtype)
|
||||
# return self.C * max_class_weight + self.reg_lambda
|
||||
#
|
||||
# def lipchitz_constant(self, class_weight):
|
||||
# """See super class.
|
||||
# """
|
||||
# max_class_weight = self.max_class_weight(class_weight, self.dtype)
|
||||
# return self.C * max_class_weight + self.reg_lambda * self.radius()
|
||||
#
|
||||
# def kernel_regularizer(self):
|
||||
# """
|
||||
# l2 loss using reg_lambda as the l2 term (as desired). Required for
|
||||
# this loss function to be strongly convex.
|
||||
# :return:
|
||||
# """
|
||||
# return L1L2(l2=self.reg_lambda)
|
||||
#
|
||||
#
|
||||
# class StrongConvexCategoricalCrossentropy(
|
||||
# losses.CategoricalCrossentropy,
|
||||
# StrongConvexMixin
|
||||
# ):
|
||||
# """
|
||||
# Strong Convex version of CategoricalCrossentropy loss using l2 weight
|
||||
# regularization.
|
||||
# """
|
||||
#
|
||||
# def __init__(self,
|
||||
# reg_lambda: float,
|
||||
# C: float,
|
||||
# radius_constant: float,
|
||||
# from_logits: bool = True,
|
||||
# label_smoothing: float = 0,
|
||||
# reduction: str = losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE,
|
||||
# name: str = 'binarycrossentropy',
|
||||
# dtype=tf.float32):
|
||||
# """
|
||||
# Args:
|
||||
# reg_lambda: Weight regularization constant
|
||||
# C: Penalty parameter C of the loss term
|
||||
# radius_constant: constant defining the length of the radius
|
||||
# reduction: reduction type to use. See super class
|
||||
# label_smoothing: amount of smoothing to perform on labels
|
||||
# relaxation of trust in labels, e.g. (1 -> 1-x, 0 -> 0+x)
|
||||
# name: Name of the loss instance
|
||||
# dtype: tf datatype to use for tensor conversions.
|
||||
# """
|
||||
# if reg_lambda <= 0:
|
||||
# raise ValueError("reg lambda: {0} must be positive".format(reg_lambda))
|
||||
# if C <= 0:
|
||||
# raise ValueError('c: {0}, should be >= 0'.format(C))
|
||||
# if radius_constant <= 0:
|
||||
# raise ValueError('radius_constant: {0}, should be >= 0'.format(
|
||||
# radius_constant
|
||||
# ))
|
||||
#
|
||||
# self.C = C
|
||||
# self.dtype = dtype
|
||||
# self.reg_lambda = tf.constant(reg_lambda, dtype=self.dtype)
|
||||
# super(StrongConvexHuber, self).__init__(reduction=reduction,
|
||||
# name=name,
|
||||
# from_logits=from_logits,
|
||||
# label_smoothing=label_smoothing,
|
||||
# )
|
||||
# self.radius_constant = radius_constant
|
||||
#
|
||||
# def call(self, y_true, y_pred):
|
||||
# """Compute loss
|
||||
#
|
||||
# Args:
|
||||
# y_true: Ground truth values.
|
||||
# y_pred: The predicted values.
|
||||
#
|
||||
# Returns:
|
||||
# Loss values per sample.
|
||||
# """
|
||||
# loss = super()
|
||||
# loss = loss * self.C
|
||||
# return loss
|
||||
#
|
||||
# def radius(self):
|
||||
# """See super class.
|
||||
# """
|
||||
# return self.radius_constant / self.reg_lambda
|
||||
#
|
||||
# def gamma(self):
|
||||
# """See super class.
|
||||
# """
|
||||
# return self.reg_lambda
|
||||
#
|
||||
# def beta(self, class_weight):
|
||||
# """See super class.
|
||||
# """
|
||||
# max_class_weight = self.max_class_weight(class_weight, self.dtype)
|
||||
# return self.C * max_class_weight + self.reg_lambda
|
||||
#
|
||||
# def lipchitz_constant(self, class_weight):
|
||||
# """See super class.
|
||||
# """
|
||||
# max_class_weight = self.max_class_weight(class_weight, self.dtype)
|
||||
# return self.C * max_class_weight + self.reg_lambda * self.radius()
|
||||
#
|
||||
# def kernel_regularizer(self):
|
||||
# """
|
||||
# l2 loss using reg_lambda as the l2 term (as desired). Required for
|
||||
# this loss function to be strongly convex.
|
||||
# :return:
|
||||
# """
|
||||
# return L1L2(l2=self.reg_lambda)
|
|
@ -24,7 +24,7 @@ from privacy.bolton.losses import StrongConvexMixin
|
|||
from privacy.bolton.optimizers import Bolton
|
||||
|
||||
|
||||
class BoltonModel(Model):
|
||||
class BoltonModel(Model): # pylint: disable=abstract-method
|
||||
"""Bolton episilon-delta differential privacy model.
|
||||
|
||||
The privacy guarantees are dependent on the noise that is sampled. Please
|
||||
|
|
|
@ -32,7 +32,7 @@ from privacy.bolton.losses import StrongConvexMixin
|
|||
from privacy.bolton import optimizers as opt
|
||||
|
||||
|
||||
class TestModel(Model):
|
||||
class TestModel(Model): # pylint: disable=abstract-method
|
||||
"""Bolton episilon-delta model.
|
||||
Uses 4 key steps to achieve privacy guarantees:
|
||||
1. Adds noise to weights after training (output perturbation).
|
||||
|
|
|
@ -1,13 +1,29 @@
|
|||
# Copyright 2019, The TensorFlow Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Tutorial for bolton module, the model and the optimizer."""
|
||||
import sys
|
||||
|
||||
sys.path.append('..')
|
||||
import tensorflow as tf
|
||||
from privacy.bolton import losses
|
||||
from privacy.bolton import models
|
||||
|
||||
"""First, we will create a binary classification dataset with a single output
|
||||
dimension. The samples for each label are repeated data points at different
|
||||
points in space."""
|
||||
import tensorflow as tf # pylint: disable=wrong-import-position
|
||||
from privacy.bolton import losses # pylint: disable=wrong-import-position
|
||||
from privacy.bolton import models # pylint: disable=wrong-import-position
|
||||
# -------
|
||||
# First, we will create a binary classification dataset with a single output
|
||||
# dimension. The samples for each label are repeated data points at different
|
||||
# points in space.
|
||||
# -------
|
||||
# Parameters for dataset
|
||||
n_samples = 10
|
||||
input_dim = 2
|
||||
|
@ -22,42 +38,50 @@ print(x.shape, y.shape)
|
|||
generator = tf.data.Dataset.from_tensor_slices((x, y))
|
||||
generator = generator.batch(10)
|
||||
generator = generator.shuffle(10)
|
||||
"""First, we will explore using the pre - built BoltonModel, which is a thin
|
||||
wrapper around a Keras Model using a single - layer neural network.
|
||||
It automatically uses the Bolton Optimizer which encompasses all the logic
|
||||
required for the Bolton Differential Privacy method."""
|
||||
# -------
|
||||
# First, we will explore using the pre - built BoltonModel, which is a thin
|
||||
# wrapper around a Keras Model using a single - layer neural network.
|
||||
# It automatically uses the Bolton Optimizer which encompasses all the logic
|
||||
# required for the Bolton Differential Privacy method.
|
||||
# -------
|
||||
bolt = models.BoltonModel(n_outputs) # tell the model how many outputs we have.
|
||||
"""Now, we will pick our optimizer and Strongly Convex Loss function. The loss
|
||||
must extend from StrongConvexMixin and implement the associated methods.Some
|
||||
existing loss functions are pre - implemented in bolton.loss"""
|
||||
# -------
|
||||
# Now, we will pick our optimizer and Strongly Convex Loss function. The loss
|
||||
# must extend from StrongConvexMixin and implement the associated methods.Some
|
||||
# existing loss functions are pre - implemented in bolton.loss
|
||||
# -------
|
||||
optimizer = tf.optimizers.SGD()
|
||||
reg_lambda = 1
|
||||
C = 1
|
||||
radius_constant = 1
|
||||
loss = losses.StrongConvexBinaryCrossentropy(reg_lambda, C, radius_constant)
|
||||
"""For simplicity, we pick all parameters of the StrongConvexBinaryCrossentropy
|
||||
to be 1; these are all tunable and their impact can be read in losses.
|
||||
StrongConvexBinaryCrossentropy.We then compile the model with the chosen
|
||||
optimizer and loss, which will automatically wrap the chosen optimizer with the
|
||||
Bolton Optimizer, ensuring the required components function as required for
|
||||
privacy guarantees."""
|
||||
# -------
|
||||
# For simplicity, we pick all parameters of the StrongConvexBinaryCrossentropy
|
||||
# to be 1; these are all tunable and their impact can be read in losses.
|
||||
# StrongConvexBinaryCrossentropy.We then compile the model with the chosen
|
||||
# optimizer and loss, which will automatically wrap the chosen optimizer with the
|
||||
# Bolton Optimizer, ensuring the required components function as required for
|
||||
# privacy guarantees.
|
||||
# -------
|
||||
bolt.compile(optimizer, loss)
|
||||
"""To fit the model, the optimizer will require additional information about
|
||||
the dataset and model.These parameters are:
|
||||
1. the class_weights used
|
||||
2. the number of samples in the dataset
|
||||
3. the batch size which the model will try to infer, if possible. If not, you
|
||||
will be required to pass these explicitly to the fit method.
|
||||
|
||||
As well, there are two privacy parameters than can be altered:
|
||||
1. epsilon, a float
|
||||
2. noise_distribution, a valid string indicating the distriution to use (must be
|
||||
implemented)
|
||||
|
||||
The BoltonModel offers a helper method,.calculate_class_weight to aid in
|
||||
class_weight calculation."""
|
||||
# -------
|
||||
# To fit the model, the optimizer will require additional information about
|
||||
# the dataset and model.These parameters are:
|
||||
# 1. the class_weights used
|
||||
# 2. the number of samples in the dataset
|
||||
# 3. the batch size which the model will try to infer, if possible. If not, you
|
||||
# will be required to pass these explicitly to the fit method.
|
||||
#
|
||||
# As well, there are two privacy parameters than can be altered:
|
||||
# 1. epsilon, a float
|
||||
# 2. noise_distribution, a valid string indicating the distriution to use (must be
|
||||
# implemented)
|
||||
#
|
||||
# The BoltonModel offers a helper method,.calculate_class_weight to aid in
|
||||
# class_weight calculation.
|
||||
# required parameters
|
||||
class_weight = None # default, use .calculate_class_weight to specify other values
|
||||
# -------
|
||||
class_weight = None # default, use .calculate_class_weight for other values
|
||||
batch_size = None # default, if it cannot be inferred, specify this
|
||||
n_samples = None # default, if it cannot be iferred, specify this
|
||||
# privacy parameters
|
||||
|
@ -72,13 +96,15 @@ bolt.fit(x,
|
|||
n_samples=n_samples,
|
||||
noise_distribution=noise_distribution,
|
||||
epochs=2)
|
||||
"""We may also train a generator object, or try different optimizers and loss
|
||||
functions. Below, we will see that we must pass the number of samples as the fit
|
||||
method is unable to infer it for a generator."""
|
||||
# -------
|
||||
# We may also train a generator object, or try different optimizers and loss
|
||||
# functions. Below, we will see that we must pass the number of samples as the
|
||||
# fit method is unable to infer it for a generator.
|
||||
# -------
|
||||
optimizer2 = tf.optimizers.Adam()
|
||||
bolt.compile(optimizer2, loss)
|
||||
# required parameters
|
||||
class_weight = None # default, use .calculate_class_weight to specify other values
|
||||
class_weight = None # default, use .calculate_class_weight for other values
|
||||
batch_size = None # default, if it cannot be inferred, specify this
|
||||
n_samples = None # default, if it cannot be iferred, specify this
|
||||
# privacy parameters
|
||||
|
@ -95,7 +121,9 @@ try:
|
|||
)
|
||||
except ValueError as e:
|
||||
print(e)
|
||||
"""And now, re running with the parameter set."""
|
||||
# -------
|
||||
# And now, re running with the parameter set.
|
||||
# -------
|
||||
n_samples = 20
|
||||
bolt.fit(generator,
|
||||
epsilon=epsilon,
|
||||
|
@ -105,42 +133,47 @@ bolt.fit(generator,
|
|||
noise_distribution=noise_distribution,
|
||||
verbose=0
|
||||
)
|
||||
"""You don't have to use the bolton model to use the Bolton method.
|
||||
There are only a few requirements:
|
||||
1. make sure any requirements from the loss are implemented in the model.
|
||||
2. instantiate the optimizer and use it as a context around your fit operation.
|
||||
"""
|
||||
|
||||
from privacy.bolton.optimizers import Bolton
|
||||
|
||||
"""Here, we create our own model and setup the Bolton optimizer."""
|
||||
|
||||
class TestModel(tf.keras.Model):
|
||||
def __init__(self, reg_layer, n_outputs=1):
|
||||
# -------
|
||||
# You don't have to use the bolton model to use the Bolton method.
|
||||
# There are only a few requirements:
|
||||
# 1. make sure any requirements from the loss are implemented in the model.
|
||||
# 2. instantiate the optimizer and use it as a context around the fit operation.
|
||||
# -------
|
||||
# -------------------- Part 2, using the Optimizer
|
||||
from privacy.bolton.optimizers import Bolton # pylint: disable=wrong-import-position
|
||||
# -------
|
||||
# Here, we create our own model and setup the Bolton optimizer.
|
||||
# -------
|
||||
class TestModel(tf.keras.Model): # pylint: disable=abstract-method
|
||||
def __init__(self, reg_layer, number_of_outputs=1):
|
||||
super(TestModel, self).__init__(name='test')
|
||||
self.output_layer = tf.keras.layers.Dense(n_outputs,
|
||||
self.output_layer = tf.keras.layers.Dense(number_of_outputs,
|
||||
kernel_regularizer=reg_layer
|
||||
)
|
||||
|
||||
def call(self, inputs):
|
||||
def call(self, inputs): # pylint: disable=arguments-differ
|
||||
return self.output_layer(inputs)
|
||||
|
||||
|
||||
optimizer = tf.optimizers.SGD()
|
||||
loss = losses.StrongConvexBinaryCrossentropy(reg_lambda, C, radius_constant)
|
||||
optimizer = Bolton(optimizer, loss)
|
||||
"""Now, we instantiate our model and check for 1. Since our loss requires L2
|
||||
regularization over the kernel, we will pass it to the model."""
|
||||
# -------
|
||||
# Now, we instantiate our model and check for 1. Since our loss requires L2
|
||||
# regularization over the kernel, we will pass it to the model.
|
||||
# -------
|
||||
n_outputs = 1 # parameter for model and optimizer context.
|
||||
test_model = TestModel(loss.kernel_regularizer(), n_outputs)
|
||||
test_model.compile(optimizer, loss)
|
||||
"""We comply with 2., and use the Bolton Optimizer as a context around the fit
|
||||
method."""
|
||||
# -------
|
||||
# We comply with 2., and use the Bolton Optimizer as a context around the fit
|
||||
# method.
|
||||
# -------
|
||||
# parameters for context
|
||||
noise_distribution = 'laplace'
|
||||
epsilon = 2
|
||||
class_weights = 1 # Previously, the fit method auto-detected the class_weights.
|
||||
# Here, we need to pass the class_weights explicitly. 1 is the equivalent of None.
|
||||
# Here, we need to pass the class_weights explicitly. 1 is the same as None.
|
||||
n_samples = 20
|
||||
batch_size = 5
|
||||
|
||||
|
|
Loading…
Reference in a new issue