add rdp for subsample without replacement

This commit is contained in:
Yuqing 2021-03-12 13:56:52 -08:00
parent 5524409cbd
commit c0d3431eb2
3 changed files with 198 additions and 1 deletions

View file

@ -0,0 +1,2 @@
.idea
__pycache__

View file

@ -13,7 +13,6 @@
# limitations under the License.
# ==============================================================================
"""RDP analysis of the Sampled Gaussian Mechanism.
Functionality for computing Renyi differential privacy (RDP) of an additive
Sampled Gaussian Mechanism (SGM). Its public interface consists of two methods:
compute_rdp(q, noise_multiplier, T, orders) computes RDP for SGM iterated
@ -46,6 +45,7 @@ import sys
import numpy as np
from scipy import special
import six
import rdp_utils
########################
# LOG-SPACE ARITHMETIC #
@ -76,6 +76,21 @@ def _log_sub(logx, logy):
except OverflowError:
return logx
def _log_sub_sign(logx, logy):
# ensure that x > y
# this function returns the stable version of log(exp(logx)-exp(logy)) if logx > logy
if logx > logy:
s = True
mag = logx + np.log(1 - np.exp(logy - logx))
elif logx < logy:
s = False
mag = logy + np.log(1 - np.exp(logx - logy))
else:
s = True
mag = -np.inf
return s, mag
def _log_print(logx):
"""Pretty print."""
@ -268,6 +283,57 @@ def _compute_eps(orders, rdp, delta):
idx_opt = np.argmin(eps_vec)
return max(0, eps_vec[idx_opt]), orders_vec[idx_opt]
def _stable_inplace_diff_in_log(vec, signs, n=-1):
""" This function replaces the first n-1 dimension of vec with the log of abs difference operator
Input:
- `vec` is a numpy array of floats with size larger than 'n'
- `signs` is a numpy array of bools with the same size as vec
- `n` is an optional argument in case one needs to compute partial differences
`vec` and `signs` jointly describe a vector of real numbers' sign and abs in log scale.
Output:
The first n-1 dimension of vec and signs will store the log-abs and sign of the difference.
"""
#
# And the first n-1 dimension of signs with the sign of the differences.
# the sign is assigned to True to break symmetry if the diff is 0
# Input:
assert (vec.shape == signs.shape)
if n < 0:
n = np.max(vec.shape) - 1
else:
assert (np.max(vec.shape) >= n + 1)
for j in range(0, n, 1):
if signs[j] == signs[j + 1]: # When the signs are the same
# if the signs are both positive, then we can just use the standard one
signs[j], vec[j] = _log_sub_sign(vec[j + 1],vec[j])
# otherwise, we do that but toggle the sign
if signs[j + 1] == False:
signs[j] = ~signs[j]
else: # When the signs are different.
vec[j] = _log_add(vec[j], vec[j + 1])
signs[j] = signs[j + 1]
def _get_forward_diffs(fun, n):
"""
This is the key function for computing up to nth order forward difference evaluated at 0, used for Subsample Gaussian mechanism
See Theorem 27 of https://arxiv.org/pdf/1808.00087.pdf
"""
# Pre-compute the finite difference operators
# Save them in log-scale
func_vec = np.zeros(n + 3)
signs_func_vec = np.ones(n + 3, dtype=bool)
deltas = np.zeros(n + 2) # ith coordinate of deltas stores log(abs(ith order discrete derivative))
signs_deltas = np.zeros(n + 2, dtype=bool)
for i in range(1, n + 3, 1):
func_vec[i] = fun(1.0 * (i - 1))
for i in range(0, n + 2, 1):
# Diff in log scale
_stable_inplace_diff_in_log(func_vec, signs_func_vec, n=n + 2 - i)
deltas[i] = func_vec[0]
signs_deltas[i] = signs_func_vec[0]
return deltas, signs_deltas
def _compute_rdp(q, sigma, alpha):
"""Compute RDP of the Sampled Gaussian mechanism at order alpha.
@ -313,6 +379,128 @@ def compute_rdp(q, noise_multiplier, steps, orders):
return rdp * steps
def compute_rdp_sample_without_replacement(q, noise_multiplier, steps, orders):
"""Compute RDP of the Sampled Gaussian Mechanism using sampling without replacement.
This function applies to the following schemes:
1. Sampling without replacement: Sample a uniformly random subset of size m = q*n.
2. ``Replace one data point'' version of differential privacy, i.e., n is considered public
information.
Reference: Theorem 27 of https://arxiv.org/pdf/1808.00087.pdf (A strengthened version applies subsampled-Gaussian mechanism)
- Wang, Balle, Kasiviswanathan. "Subsampled Renyi Differential Privacy and Analytical Moments
Accountant." AISTATS'2019.
Args:
q: The sampling proportion = m / n. Assume m is an integer <= n.
noise_multiplier: The ratio of the standard deviation of the Gaussian noise
to the l2-sensitivity of the function to which it is added.
steps: The number of steps.
orders: An array (or a scalar) of RDP orders.
Returns:
The RDPs at all orders, can be np.inf.
"""
if np.isscalar(orders):
rdp = _compute_rdp_sample_without_replacement_scalar(q, noise_multiplier, orders)
else:
rdp = np.array([_compute_rdp_sample_without_replacement_scalar(q, noise_multiplier, order)
for order in orders])
return rdp * steps
def _compute_rdp_sample_without_replacement_scalar(q, sigma, alpha):
"""Compute RDP of the Sampled Gaussian mechanism at order alpha.
Args:
q: The sampling proportion = m / n. Assume m is an integer <= n.
sigma: The std of the additive Gaussian noise.
alpha: The order at which RDP is computed.
Returns:
RDP at alpha, can be np.inf.
"""
assert (q <= 1) and (q >= 0) and (alpha >= 1)
if q == 0:
return 0
if q == 1.:
return alpha / (2 * sigma**2)
if np.isinf(alpha):
return np.inf
if isinstance(alpha, six.integer_types):
return _compute_rdp_sample_without_replacement_int(q, sigma, alpha) / (alpha - 1)
else:
# When alpha not an integer, we apply Corollary 10 of [WBK19] to interpolate the
# CGF and obtain an upper bound
alpha_f = math.floor(alpha)
alpha_c = math.ceil(alpha)
x = _compute_rdp_sample_without_replacement_int(q, sigma, alpha_f)
y = _compute_rdp_sample_without_replacement_int(q, sigma, alpha_c)
t = alpha - alpha_f
return ((1-t) * x + t * y) / (alpha-1)
def _compute_rdp_sample_without_replacement_int(q, sigma, alpha):
"""Compute log(A_alpha) for integer alpha. 0 < q < 1, under subsampling without replacement.
when alpha is smaller than max_alpha, compute the bound Theorem 27 exactly, else compute the bound with stirling approximation
Args:
q: The sampling proportion = m / n. Assume m is an integer <= n.
sigma: The std of the additive Gaussian noise.
alpha: The order at which RDP is computed.
Returns:
RDP at alpha, can be np.inf.
"""
max_alpha = 100
assert isinstance(alpha, six.integer_types)
if np.isinf(alpha):
return np.inf
elif alpha==1:
return 0
def cgf(x):
# Return rdp(x+1)*x, the rdp of Gaussian mechanism is alpha/(2*sigma**2)
return x*1.0*(x+1)/(2.0*sigma**2)
def func(x):
# Return the rdp of Gaussian mechanism
return 1.0*(x)/(2.0*sigma**2)
# We need forward differences of exp(cgf)
# The following line is the numerically stable way of implementing it.
# The output is in polar form with logarithmic magnitude
deltas, signs_deltas = _get_forward_diffs(cgf, alpha)
# Initialize with 1 in the log space.
log_a = 0
if alpha <= max_alpha:
# Compute the bound exactly requires book keeping of O(alpha**2)
for i in range(2, alpha+1):
if i == 2:
s = 2 * np.log(q) + _log_comb(alpha, 2) + np.minimum(np.log(4) + func(2.0) + np.log(1 - np.exp(-func(2.0))),func(2.0) + np.log(2))
elif i > 2:
s = np.minimum(np.log(4) + 0.5*deltas[int(2*np.floor(i/2.0))-1]+ 0.5*deltas[int(2*np.ceil(i/2.0))-1],np.log(2)+ cgf(i - 1)) \
+ i * np.log(q) +_log_comb(alpha, i)
log_a = _log_add(log_a,s)
return float(log_a)
else:
# Compute the bound with stirling approximation. Everything is O(x) now.
for i in range(2, alpha + 1):
if i == 2:
s = 2 * np.log(q) + _log_comb(alpha,2) + np.minimum(
np.log(4) + func(2.0) + np.log(1 - np.exp(-func(2.0))), func(2.0) + np.log(2))
else:
s = np.log(2) + cgf(i-1) + i*np.log(q) + _log_comb(alpha, i)
log_a = _log_add(log_a, s)
return log_a
def compute_heterogenous_rdp(sampling_probabilities, noise_multipliers,
steps_list, orders):

View file

@ -102,6 +102,13 @@ class TestGaussianMoments(parameterized.TestCase):
rdp_scalar = rdp_accountant.compute_rdp(0.1, 2, 10, 5)
self.assertAlmostEqual(rdp_scalar, 0.07737, places=5)
def test_compute_rdp_sequence_without_replacement(self):
rdp_vec = rdp_accountant.compute_rdp_sample_without_replacement(0.01, 2.5, 50,
[1.001, 1.5, 2.5, 5, 50, 100, np.inf])
self.assertSequenceAlmostEqual(
rdp_vec, [0.003470,0.003470, 0.004638, 0.0087633, 0.09847, 167.766388, np.inf],
delta=1e-5)
def test_compute_rdp_sequence(self):
rdp_vec = rdp_accountant.compute_rdp(0.01, 2.5, 50,
[1.5, 2.5, 5, 50, 100, np.inf])