forked from 626_privacy/tensorflow_privacy
Small updates in preparation for auto-generating documentation.
PiperOrigin-RevId: 367073829
This commit is contained in:
parent
693dd666c3
commit
c8b1c97b47
4 changed files with 27 additions and 15 deletions
|
@ -53,14 +53,14 @@ def make_optimizer_class(cls):
|
|||
"""Initialize the DPOptimizerClass.
|
||||
|
||||
Args:
|
||||
dp_sum_query: DPQuery object, specifying differential privacy
|
||||
dp_sum_query: `DPQuery` object, specifying differential privacy
|
||||
mechanism to use.
|
||||
num_microbatches: How many microbatches into which the minibatch is
|
||||
split. If None, will default to the size of the minibatch, and
|
||||
num_microbatches: Number of microbatches into which each minibatch is
|
||||
split. If `None`, will default to the size of the minibatch, and
|
||||
per-example gradients will be computed.
|
||||
unroll_microbatches: If true, processes microbatches within a Python
|
||||
loop instead of a tf.while_loop. Can be used if using a tf.while_loop
|
||||
raises an exception.
|
||||
loop instead of a `tf.while_loop`. Can be used if using a
|
||||
`tf.while_loop` raises an exception.
|
||||
"""
|
||||
super(DPOptimizerClass, self).__init__(*args, **kwargs)
|
||||
self._dp_sum_query = dp_sum_query
|
||||
|
@ -205,6 +205,8 @@ def make_optimizer_class(cls):
|
|||
return super(DPOptimizerClass,
|
||||
self).apply_gradients(grads_and_vars, global_step, name)
|
||||
|
||||
DPOptimizerClass.__doc__ = ('DP subclass of {}.').format(cls.__name__)
|
||||
|
||||
return DPOptimizerClass
|
||||
|
||||
|
||||
|
@ -265,6 +267,9 @@ def make_gaussian_optimizer_class(cls):
|
|||
def ledger(self):
|
||||
return self._dp_sum_query.ledger
|
||||
|
||||
DPGaussianOptimizerClass.__doc__ = ('DP subclass of {} using Gaussian '
|
||||
'averaging.').format(cls.__name__)
|
||||
|
||||
return DPGaussianOptimizerClass
|
||||
|
||||
AdagradOptimizer = tf.train.AdagradOptimizer
|
||||
|
|
|
@ -49,9 +49,9 @@ def make_keras_optimizer_class(cls):
|
|||
"""Initialize the DPOptimizerClass.
|
||||
|
||||
Args:
|
||||
l2_norm_clip: Clipping norm (max L2 norm of per microbatch gradients)
|
||||
noise_multiplier: Ratio of the standard deviation to the clipping norm
|
||||
num_microbatches: The number of microbatches into which each minibatch
|
||||
l2_norm_clip: Clipping norm (max L2 norm of per microbatch gradients).
|
||||
noise_multiplier: Ratio of the standard deviation to the clipping norm.
|
||||
num_microbatches: Number of microbatches into which each minibatch
|
||||
is split.
|
||||
"""
|
||||
super(DPOptimizerClass, self).__init__(*args, **kwargs)
|
||||
|
@ -169,6 +169,9 @@ def make_keras_optimizer_class(cls):
|
|||
return super(DPOptimizerClass,
|
||||
self).apply_gradients(grads_and_vars, global_step, name)
|
||||
|
||||
DPOptimizerClass.__doc__ = ('DP subclass of {} using Gaussian '
|
||||
'averaging.').format(cls.__name__)
|
||||
|
||||
return DPOptimizerClass
|
||||
|
||||
|
||||
|
|
|
@ -62,9 +62,9 @@ def make_vectorized_keras_optimizer_class(cls):
|
|||
"""Initialize the DPOptimizerClass.
|
||||
|
||||
Args:
|
||||
l2_norm_clip: Clipping norm (max L2 norm of per microbatch gradients)
|
||||
noise_multiplier: Ratio of the standard deviation to the clipping norm
|
||||
num_microbatches: The number of microbatches into which each minibatch
|
||||
l2_norm_clip: Clipping norm (max L2 norm of per microbatch gradients).
|
||||
noise_multiplier: Ratio of the standard deviation to the clipping norm.
|
||||
num_microbatches: Number of microbatches into which each minibatch
|
||||
is split.
|
||||
"""
|
||||
super(DPOptimizerClass, self).__init__(*args, **kwargs)
|
||||
|
@ -177,6 +177,8 @@ def make_vectorized_keras_optimizer_class(cls):
|
|||
return super(DPOptimizerClass,
|
||||
self).apply_gradients(grads_and_vars, global_step, name)
|
||||
|
||||
DPOptimizerClass.__doc__ = ('Vectorized DP subclass of {} using Gaussian '
|
||||
'averaging.').format(cls.__name__)
|
||||
return DPOptimizerClass
|
||||
|
||||
|
||||
|
|
|
@ -51,10 +51,10 @@ def make_vectorized_optimizer_class(cls):
|
|||
"""Initialize the DPOptimizerClass.
|
||||
|
||||
Args:
|
||||
l2_norm_clip: Clipping norm (max L2 norm of per microbatch gradients)
|
||||
noise_multiplier: Ratio of the standard deviation to the clipping norm
|
||||
num_microbatches: How many microbatches into which the minibatch is
|
||||
split. If None, will default to the size of the minibatch, and
|
||||
l2_norm_clip: Clipping norm (max L2 norm of per microbatch gradients).
|
||||
noise_multiplier: Ratio of the standard deviation to the clipping norm.
|
||||
num_microbatches: Number of microbatches into which each minibatch is
|
||||
split. If `None`, will default to the size of the minibatch, and
|
||||
per-example gradients will be computed.
|
||||
"""
|
||||
super(DPOptimizerClass, self).__init__(*args, **kwargs)
|
||||
|
@ -136,6 +136,8 @@ def make_vectorized_optimizer_class(cls):
|
|||
|
||||
return list(zip(final_grads, var_list))
|
||||
|
||||
DPOptimizerClass.__doc__ = ('Vectorized DP subclass of {} using Gaussian '
|
||||
'averaging.').format(cls.__name__)
|
||||
return DPOptimizerClass
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue