forked from 626_privacy/tensorflow_privacy
Initial commit
This commit is contained in:
parent
45e9280a8c
commit
cbce4540d3
1 changed files with 59 additions and 0 deletions
59
tensorflow_privacy/privacy/analysis/GDprivacy_accountants.py
Normal file
59
tensorflow_privacy/privacy/analysis/GDprivacy_accountants.py
Normal file
|
@ -0,0 +1,59 @@
|
||||||
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# =============================================================================
|
||||||
|
|
||||||
|
r"""This code applies the Dual and Central Limit
|
||||||
|
Theorem (CLT) to estimate privacy budget of an iterated subsampled
|
||||||
|
Gaussian Mechanism (by either uniform or Poisson subsampling).
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from scipy.stats import norm
|
||||||
|
from scipy import optimize
|
||||||
|
|
||||||
|
# Total number of examples:N
|
||||||
|
# batch size:batch_size
|
||||||
|
# Noise multiplier for DP-SGD/DP-Adam:noise_multiplier
|
||||||
|
# current epoch:epoch
|
||||||
|
# Target delta:delta
|
||||||
|
|
||||||
|
# Compute mu from uniform subsampling
|
||||||
|
def compute_muU(epoch,noise_multi,N,batch_size):
|
||||||
|
T=epoch*N/batch_size
|
||||||
|
c=batch_size*np.sqrt(T)/N
|
||||||
|
return(np.sqrt(2)*c*np.sqrt(np.exp(noise_multi**(-2))*norm.cdf(1.5/noise_multi)+3*norm.cdf(-0.5/noise_multi)-2))
|
||||||
|
|
||||||
|
# Compute mu from Poisson subsampling
|
||||||
|
def compute_muP(epoch,noise_multi,N,batch_size):
|
||||||
|
T=epoch*N/batch_size
|
||||||
|
return(np.sqrt(np.exp(noise_multi**(-2))-1)*np.sqrt(T)*batch_size/N)
|
||||||
|
|
||||||
|
# Dual between mu-GDP and (epsilon,delta)-DP
|
||||||
|
def delta_eps_mu(eps,mu):
|
||||||
|
return norm.cdf(-eps/mu+mu/2)-np.exp(eps)*norm.cdf(-eps/mu-mu/2)
|
||||||
|
|
||||||
|
# inverse Dual
|
||||||
|
def eps_from_mu(mu,delta):
|
||||||
|
def f(x):
|
||||||
|
return delta_eps_mu(x,mu)-delta
|
||||||
|
return optimize.root_scalar(f, bracket=[0, 500], method='brentq').root
|
||||||
|
|
||||||
|
# inverse Dual of uniform subsampling
|
||||||
|
def compute_epsU(epoch,noise_multi,N,batch_size,delta):
|
||||||
|
return(eps_from_mu(compute_muU(epoch,noise_multi,N,batch_size),delta))
|
||||||
|
|
||||||
|
# inverse Dual of Poisson subsampling
|
||||||
|
def compute_epsP(epoch,noise_multi,N,batch_size,delta):
|
||||||
|
return(eps_from_mu(compute_muP(epoch,noise_multi,N,batch_size),delta))
|
Loading…
Reference in a new issue