forked from 626_privacy/tensorflow_privacy
conflicts in opt test
This commit is contained in:
commit
d10d7b0148
6 changed files with 105 additions and 60 deletions
|
@ -56,7 +56,7 @@ class StrongConvexMixin:
|
|||
|
||||
Args:
|
||||
class_weight: the class weights as scalar or 1d tensor, where its
|
||||
dimensionality is equal to the number of outputs.
|
||||
dimensionality is equal to the number of outputs.
|
||||
|
||||
Returns:
|
||||
Beta
|
||||
|
@ -115,7 +115,7 @@ class StrongConvexHuber(losses.Loss, StrongConvexMixin):
|
|||
C: Penalty parameter C of the loss term
|
||||
radius_constant: constant defining the length of the radius
|
||||
delta: delta value in huber loss. When to switch from quadratic to
|
||||
absolute deviation.
|
||||
absolute deviation.
|
||||
reduction: reduction type to use. See super class
|
||||
name: Name of the loss instance
|
||||
dtype: tf datatype to use for tensor conversions.
|
||||
|
|
|
@ -76,17 +76,12 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
|||
def compile(self,
|
||||
optimizer,
|
||||
loss,
|
||||
metrics=None,
|
||||
loss_weights=None,
|
||||
sample_weight_mode=None,
|
||||
weighted_metrics=None,
|
||||
target_tensors=None,
|
||||
distribute=None,
|
||||
kernel_initializer=tf.initializers.GlorotUniform,
|
||||
**kwargs): # pylint: disable=arguments-differ
|
||||
"""See super class. Default optimizer used in Bolton method is SGD.
|
||||
|
||||
Args:
|
||||
<<<<<<< HEAD
|
||||
optimizer:
|
||||
loss:
|
||||
metrics:
|
||||
|
@ -96,6 +91,14 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
|||
target_tensors:
|
||||
distribute:
|
||||
kernel_initializer:
|
||||
=======
|
||||
optimizer: The optimizer to use. This will be automatically wrapped
|
||||
with the Bolton Optimizer.
|
||||
loss: The loss function to use. Must be a StrongConvex loss (extend the
|
||||
StrongConvexMixin).
|
||||
kernel_initializer: The kernel initializer to use for the single layer.
|
||||
kwargs: kwargs to keras Model.compile. See super.
|
||||
>>>>>>> 71c4a11eb9ad66a78fb13428987366887ea20beb
|
||||
"""
|
||||
if not isinstance(loss, StrongConvexMixin):
|
||||
raise ValueError('loss function must be a Strongly Convex and therefore '
|
||||
|
@ -112,15 +115,7 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
|||
optimizer = optimizers.get(optimizer)
|
||||
optimizer = Bolton(optimizer, loss)
|
||||
|
||||
super(BoltonModel, self).compile(optimizer,
|
||||
loss=loss,
|
||||
metrics=metrics,
|
||||
loss_weights=loss_weights,
|
||||
sample_weight_mode=sample_weight_mode,
|
||||
weighted_metrics=weighted_metrics,
|
||||
target_tensors=target_tensors,
|
||||
distribute=distribute,
|
||||
**kwargs)
|
||||
super(BoltonModel, self).compile(optimizer, loss=loss, **kwargs)
|
||||
|
||||
def fit(self,
|
||||
x=None,
|
||||
|
@ -142,6 +137,7 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
|||
4. Use a strongly convex loss function (see compile)
|
||||
See super implementation for more details.
|
||||
|
||||
<<<<<<< HEAD
|
||||
Args:
|
||||
n_samples: the number of individual samples in x.
|
||||
epsilon: privacy parameter, which trades off between utility an privacy.
|
||||
|
@ -149,8 +145,17 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
|||
noise_distribution: the distribution to pull noise from.
|
||||
class_weight: the class weights to be used. Can be a scalar or 1D tensor
|
||||
whose dim == n_classes.
|
||||
=======
|
||||
Args:
|
||||
n_samples: the number of individual samples in x.
|
||||
epsilon: privacy parameter, which trades off between utility an privacy.
|
||||
See the bolton paper for more description.
|
||||
noise_distribution: the distribution to pull noise from.
|
||||
class_weight: the class weights to be used. Can be a scalar or 1D tensor
|
||||
whose dim == n_classes.
|
||||
>>>>>>> 71c4a11eb9ad66a78fb13428987366887ea20beb
|
||||
|
||||
See the super method for descriptions on the rest of the arguments.
|
||||
See the super method for descriptions on the rest of the arguments.
|
||||
"""
|
||||
if class_weight is None:
|
||||
class_weight_ = self.calculate_class_weights(class_weight)
|
||||
|
@ -201,6 +206,7 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
|||
|
||||
This method is the same as fit except for when the passed dataset
|
||||
is a generator. See super method and fit for more details.
|
||||
<<<<<<< HEAD
|
||||
|
||||
Args:
|
||||
generator:
|
||||
|
@ -211,6 +217,18 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
|||
Bolton paper for more description.
|
||||
n_samples: number of individual samples in x
|
||||
steps_per_epoch:
|
||||
=======
|
||||
|
||||
Args:
|
||||
n_samples: number of individual samples in x
|
||||
noise_distribution: the distribution to get noise from.
|
||||
epsilon: privacy parameter, which trades off utility and privacy. See
|
||||
Bolton paper for more description.
|
||||
class_weight: the class weights to be used. Can be a scalar or 1D tensor
|
||||
whose dim == n_classes.
|
||||
|
||||
See the super method for descriptions on the rest of the arguments.
|
||||
>>>>>>> 71c4a11eb9ad66a78fb13428987366887ea20beb
|
||||
"""
|
||||
if class_weight is None:
|
||||
class_weight = self.calculate_class_weights(class_weight)
|
||||
|
@ -244,6 +262,7 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
|||
num_classes=None):
|
||||
"""Calculates class weighting to be used in training.
|
||||
|
||||
<<<<<<< HEAD
|
||||
Args:
|
||||
class_weights: str specifying type, array giving weights, or None.
|
||||
class_counts: If class_weights is not None, then an array of
|
||||
|
@ -252,6 +271,16 @@ class BoltonModel(Model): # pylint: disable=abstract-method
|
|||
classes.
|
||||
Returns:
|
||||
class_weights as 1D tensor, to be passed to model's fit method.
|
||||
=======
|
||||
Args:
|
||||
class_weights: str specifying type, array giving weights, or None.
|
||||
class_counts: If class_weights is not None, then an array of
|
||||
the number of samples for each class
|
||||
num_classes: If class_weights is not None, then the number of
|
||||
classes.
|
||||
Returns:
|
||||
class_weights as 1D tensor, to be passed to model's fit method.
|
||||
>>>>>>> 71c4a11eb9ad66a78fb13428987366887ea20beb
|
||||
"""
|
||||
# Value checking
|
||||
class_keys = ['balanced']
|
||||
|
|
|
@ -175,12 +175,12 @@ class InitTests(keras_parameterized.TestCase):
|
|||
},
|
||||
])
|
||||
def test_compile(self, n_outputs, loss, optimizer):
|
||||
"""test compilation of BoltonModel.
|
||||
"""Test compilation of BoltonModel.
|
||||
|
||||
Args:
|
||||
n_outputs: number of output neurons
|
||||
loss: instantiated TestLoss instance
|
||||
optimizer: instanced TestOptimizer instance
|
||||
optimizer: instantiated TestOptimizer instance
|
||||
"""
|
||||
# test compilation of valid tf.optimizer and tf.loss
|
||||
with self.cached_session():
|
||||
|
@ -206,8 +206,13 @@ class InitTests(keras_parameterized.TestCase):
|
|||
Args:
|
||||
n_outputs: number of output neurons
|
||||
loss: instantiated TestLoss instance
|
||||
<<<<<<< HEAD
|
||||
optimizer: instanced TestOptimizer instance
|
||||
"""
|
||||
=======
|
||||
optimizer: instantiated TestOptimizer instance
|
||||
"""
|
||||
>>>>>>> 71c4a11eb9ad66a78fb13428987366887ea20beb
|
||||
# test compilaton of invalid tf.optimizer and non instantiated loss.
|
||||
with self.cached_session():
|
||||
with self.assertRaises((ValueError, AttributeError)):
|
||||
|
@ -263,17 +268,17 @@ def _do_fit(n_samples,
|
|||
"""Instantiate necessary components for fitting and perform a model fit.
|
||||
|
||||
Args:
|
||||
n_samples: number of samples in dataset
|
||||
input_dim: the sample dimensionality
|
||||
n_outputs: number of output neurons
|
||||
epsilon: privacy parameter
|
||||
generator: True to create a generator, False to use an iterator
|
||||
batch_size: batch_size to use
|
||||
reset_n_samples: True to set _samples to None prior to fitting.
|
||||
False does nothing
|
||||
optimizer: instance of TestOptimizer
|
||||
loss: instance of TestLoss
|
||||
distribution: distribution to get noise from.
|
||||
n_samples: number of samples in dataset
|
||||
input_dim: the sample dimensionality
|
||||
n_outputs: number of output neurons
|
||||
epsilon: privacy parameter
|
||||
generator: True to create a generator, False to use an iterator
|
||||
batch_size: batch_size to use
|
||||
reset_n_samples: True to set _samples to None prior to fitting.
|
||||
False does nothing
|
||||
optimizer: instance of TestOptimizer
|
||||
loss: instance of TestLoss
|
||||
distribution: distribution to get noise from.
|
||||
|
||||
Returns: BoltonModel instsance
|
||||
"""
|
||||
|
@ -330,8 +335,8 @@ class FitTests(keras_parameterized.TestCase):
|
|||
"""Tests fitting of BoltonModel.
|
||||
|
||||
Args:
|
||||
generator: True for generator test, False for iterator test.
|
||||
reset_n_samples: True to reset the n_samples to None, False does nothing
|
||||
generator: True for generator test, False for iterator test.
|
||||
reset_n_samples: True to reset the n_samples to None, False does nothing
|
||||
"""
|
||||
loss = TestLoss(1, 1, 1)
|
||||
optimizer = Bolton(TestOptimizer(), loss)
|
||||
|
@ -399,10 +404,10 @@ class FitTests(keras_parameterized.TestCase):
|
|||
"""Tests fitting with invalid parameters, which should raise an error.
|
||||
|
||||
Args:
|
||||
generator: True to test with generator, False is iterator
|
||||
reset_n_samples: True to reset the n_samples param to None prior to
|
||||
passing it to fit
|
||||
distribution: distribution to get noise from.
|
||||
generator: True to test with generator, False is iterator
|
||||
reset_n_samples: True to reset the n_samples param to None prior to
|
||||
passing it to fit
|
||||
distribution: distribution to get noise from.
|
||||
"""
|
||||
with self.assertRaises(ValueError):
|
||||
loss = TestLoss(1, 1, 1)
|
||||
|
@ -506,13 +511,13 @@ class FitTests(keras_parameterized.TestCase):
|
|||
'num_classes': 2,
|
||||
'err_msg': 'Detected array length:'},
|
||||
])
|
||||
|
||||
def test_class_errors(self,
|
||||
class_weights,
|
||||
class_counts,
|
||||
num_classes,
|
||||
err_msg):
|
||||
"""Tests the BOltonModel calculate_class_weights method.
|
||||
<<<<<<< HEAD
|
||||
|
||||
This test passes invalid params which should raise the expected errors.
|
||||
|
||||
|
@ -522,6 +527,17 @@ class FitTests(keras_parameterized.TestCase):
|
|||
num_classes: number of outputs neurons
|
||||
err_msg:
|
||||
"""
|
||||
=======
|
||||
|
||||
This test passes invalid params which should raise the expected errors.
|
||||
|
||||
Args:
|
||||
class_weights: the class_weights to use.
|
||||
class_counts: count of number of samples for each class.
|
||||
num_classes: number of outputs neurons.
|
||||
err_msg: The expected error message.
|
||||
"""
|
||||
>>>>>>> 71c4a11eb9ad66a78fb13428987366887ea20beb
|
||||
clf = models.BoltonModel(1, 1)
|
||||
with self.assertRaisesRegexp(ValueError, err_msg): # pylint: disable=deprecated-method
|
||||
clf.calculate_class_weights(class_weights,
|
||||
|
|
|
@ -310,12 +310,11 @@ class Bolton(optimizer_v2.OptimizerV2):
|
|||
|
||||
Args:
|
||||
noise_distribution: the noise distribution to pick.
|
||||
see _accepted_distributions and get_noise for
|
||||
possible values.
|
||||
see _accepted_distributions and get_noise for possible values.
|
||||
epsilon: privacy parameter. Lower gives more privacy but less utility.
|
||||
layers: list of Keras/Tensorflow layers. Can be found as model.layers
|
||||
class_weights: class_weights used, which may either be a scalar or 1D
|
||||
tensor with dim == n_classes.
|
||||
tensor with dim == n_classes.
|
||||
n_samples number of rows/individual samples in the training set
|
||||
batch_size: batch size used.
|
||||
"""
|
||||
|
|
|
@ -208,7 +208,7 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
|||
args: args to optimizer fn
|
||||
result: the expected result
|
||||
test_attr: None if the fn returns the test result. Otherwise, this is
|
||||
the attribute of Bolton to check against result with.
|
||||
the attribute of Bolton to check against result with.
|
||||
|
||||
"""
|
||||
tf.random.set_seed(1)
|
||||
|
@ -263,11 +263,11 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
|||
"""test that a fn of Bolton optimizer is working as expected.
|
||||
|
||||
Args:
|
||||
r:
|
||||
shape:
|
||||
n_out:
|
||||
init_value:
|
||||
result:
|
||||
r: Radius value for StrongConvex loss function.
|
||||
shape: input_dimensionality
|
||||
n_out: output dimensionality
|
||||
init_value: the initial value for 'constant' kernel initializer
|
||||
result: the expected output after projection.
|
||||
"""
|
||||
tf.random.set_seed(1)
|
||||
@tf.function
|
||||
|
@ -301,9 +301,9 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
|||
"""Tests the context manager functionality of the optimizer.
|
||||
|
||||
Args:
|
||||
noise: noise distribution to pick
|
||||
epsilon: epsilon privacy parameter to use
|
||||
class_weights: class_weights to use
|
||||
noise: noise distribution to pick
|
||||
epsilon: epsilon privacy parameter to use
|
||||
class_weights: class_weights to use
|
||||
"""
|
||||
@tf.function
|
||||
def test_run():
|
||||
|
@ -334,9 +334,9 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
|||
"""Tests the context domains.
|
||||
|
||||
Args:
|
||||
noise: noise distribution to pick
|
||||
epsilon: epsilon privacy parameter to use
|
||||
err_msg: the expected error message
|
||||
noise: noise distribution to pick
|
||||
epsilon: epsilon privacy parameter to use
|
||||
err_msg: the expected error message
|
||||
|
||||
"""
|
||||
|
||||
|
@ -454,7 +454,7 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
|||
])
|
||||
def test_not_reroute_fn(self, fn, args):
|
||||
"""Test function is not rerouted.
|
||||
|
||||
|
||||
Test that a fn that should not be rerouted to the internal optimizer is
|
||||
in fact not rerouted.
|
||||
|
||||
|
@ -493,7 +493,7 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
|||
])
|
||||
def test_reroute_attr(self, attr):
|
||||
"""Test a function is rerouted.
|
||||
|
||||
|
||||
Test that attribute of internal optimizer is correctly rerouted to the
|
||||
internal optimizer.
|
||||
|
||||
|
@ -512,7 +512,7 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
|||
])
|
||||
def test_attribute_error(self, attr):
|
||||
"""Test rerouting of attributes.
|
||||
|
||||
|
||||
Test that attribute of internal optimizer is correctly rerouted to the
|
||||
internal optimizer
|
||||
|
||||
|
@ -539,7 +539,7 @@ class SchedulerTest(keras_parameterized.TestCase):
|
|||
"""Test attribute of internal opt correctly rerouted to the internal opt.
|
||||
|
||||
Args:
|
||||
err_msg:
|
||||
err_msg: The expected error message from the scheduler bad call.
|
||||
"""
|
||||
scheduler = opt.GammaBetaDecreasingStep()
|
||||
with self.assertRaisesRegexp(Exception, err_msg): # pylint: disable=deprecated-method
|
||||
|
@ -558,13 +558,12 @@ class SchedulerTest(keras_parameterized.TestCase):
|
|||
])
|
||||
def test_call(self, step, res):
|
||||
"""Test call.
|
||||
|
||||
Test that attribute of internal optimizer is correctly rerouted to the
|
||||
internal optimizer
|
||||
|
||||
Args:
|
||||
step:
|
||||
res:
|
||||
step: step number to 'GammaBetaDecreasingStep' 'Scheduler'.
|
||||
res: expected result from call to 'GammaBetaDecreasingStep' 'Scheduler'.
|
||||
"""
|
||||
beta = _ops.convert_to_tensor_v2(2, dtype=tf.float32)
|
||||
gamma = _ops.convert_to_tensor_v2(1, dtype=tf.float32)
|
||||
|
|
|
@ -12,6 +12,8 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Tutorial for bolton module, the model and the optimizer."""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
import tensorflow as tf # pylint: disable=wrong-import-position
|
||||
from privacy.bolton import losses # pylint: disable=wrong-import-position
|
||||
|
|
Loading…
Reference in a new issue