forked from 626_privacy/tensorflow_privacy
Add membership inference attack for seq2seq models
This commit is contained in:
parent
cd57910e5c
commit
d1c1746cdb
1 changed files with 45 additions and 2 deletions
|
@ -19,12 +19,13 @@ This file belongs to the new API for membership inference attacks. This file
|
|||
will be renamed to membership_inference_attack.py after the old API is removed.
|
||||
"""
|
||||
|
||||
from typing import Iterable
|
||||
from typing import Iterable, Union
|
||||
import numpy as np
|
||||
from sklearn import metrics
|
||||
|
||||
from tensorflow_privacy.privacy.membership_inference_attack import models
|
||||
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackInputData
|
||||
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import Seq2SeqAttackInputData
|
||||
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackResults
|
||||
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackType
|
||||
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import \
|
||||
|
@ -37,7 +38,7 @@ from tensorflow_privacy.privacy.membership_inference_attack.dataset_slicing impo
|
|||
from tensorflow_privacy.privacy.membership_inference_attack.dataset_slicing import get_slice
|
||||
|
||||
|
||||
def _get_slice_spec(data: AttackInputData) -> SingleSliceSpec:
|
||||
def _get_slice_spec(data: Union[AttackInputData, Seq2SeqAttackInputData]) -> SingleSliceSpec:
|
||||
if hasattr(data, 'slice_spec'):
|
||||
return data.slice_spec
|
||||
return SingleSliceSpec()
|
||||
|
@ -170,6 +171,48 @@ def run_attacks(attack_input: AttackInputData,
|
|||
privacy_report_metadata=privacy_report_metadata)
|
||||
|
||||
|
||||
def run_seq2seq_attack(attack_input: Seq2SeqAttackInputData,
|
||||
privacy_report_metadata: PrivacyReportMetadata = None,
|
||||
balance_attacker_training: bool = True) -> AttackResults:
|
||||
"""Runs membership inference attacks on a seq2seq model.
|
||||
|
||||
Args:
|
||||
attack_input: input data for running an attack
|
||||
privacy_report_metadata: the metadata of the model under attack.
|
||||
balance_attacker_training: Whether the training and test sets for the
|
||||
membership inference attacker should have a balanced (roughly equal)
|
||||
number of samples from the training and test sets used to develop
|
||||
the model under attack.
|
||||
|
||||
Returns:
|
||||
the attack result.
|
||||
"""
|
||||
attack_input.validate()
|
||||
attacker = models.LogisticRegressionAttacker()
|
||||
|
||||
prepared_attacker_data = models.create_seq2seq_attacker_data(
|
||||
attack_input, balance=balance_attacker_training)
|
||||
|
||||
attacker.train_model(prepared_attacker_data.features_train,
|
||||
prepared_attacker_data.is_training_labels_train)
|
||||
|
||||
# Run the attacker on (permuted) test examples.
|
||||
predictions_test = attacker.predict(prepared_attacker_data.features_test)
|
||||
|
||||
# Generate ROC curves with predictions.
|
||||
fpr, tpr, thresholds = metrics.roc_curve(
|
||||
prepared_attacker_data.is_training_labels_test, predictions_test)
|
||||
|
||||
roc_curve = RocCurve(tpr=tpr, fpr=fpr, thresholds=thresholds)
|
||||
|
||||
attack_results = [SingleAttackResult(
|
||||
slice_spec=_get_slice_spec(attack_input),
|
||||
attack_type=AttackType.LOGISTIC_REGRESSION,
|
||||
roc_curve=roc_curve)]
|
||||
|
||||
return AttackResults(single_attack_results=attack_results)
|
||||
|
||||
|
||||
def _compute_missing_privacy_report_metadata(
|
||||
metadata: PrivacyReportMetadata,
|
||||
attack_input: AttackInputData) -> PrivacyReportMetadata:
|
||||
|
|
Loading…
Reference in a new issue