more lint

This commit is contained in:
npapernot 2019-07-29 21:55:14 +00:00
parent f06443d50e
commit ddf17c9091
4 changed files with 51 additions and 45 deletions

View file

@ -11,21 +11,23 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Loss functions for bolton method"""
"""Loss functions for bolton method."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow.python.keras import losses
from tensorflow.python.keras.utils import losses_utils
from tensorflow.python.framework import ops as _ops
from tensorflow.python.keras import losses
from tensorflow.python.keras.regularizers import L1L2
from tensorflow.python.keras.utils import losses_utils
from tensorflow.python.platform import tf_logging as logging
class StrongConvexMixin:
"""
"""Strong Convex Mixin base class.
Strong Convex Mixin base class for any loss function that will be used with
Bolton model. Subclasses must be strongly convex and implement the
associated constants. They must also conform to the requirements of tf losses
@ -85,7 +87,7 @@ class StrongConvexMixin:
return None
def max_class_weight(self, class_weight, dtype):
"""the maximum weighting in class weights (max value) as a scalar tensor
"""The maximum weighting in class weights (max value) as a scalar tensor.
Args:
class_weight: class weights used
@ -103,7 +105,7 @@ class StrongConvexHuber(losses.Loss, StrongConvexMixin):
def __init__(self,
reg_lambda,
C,
c_arg,
radius_constant,
delta,
reduction=losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE,
@ -117,31 +119,30 @@ class StrongConvexHuber(losses.Loss, StrongConvexMixin):
delta: delta value in huber loss. When to switch from quadratic to
absolute deviation.
reduction: reduction type to use. See super class
name: Name of the loss instance
dtype: tf datatype to use for tensor conversions.
Returns:
Loss values per sample.
"""
if C <= 0:
raise ValueError('c: {0}, should be >= 0'.format(C))
if c_arg <= 0:
raise ValueError("c: {0}, should be >= 0".format(c_arg))
if reg_lambda <= 0:
raise ValueError("reg lambda: {0} must be positive".format(reg_lambda))
if radius_constant <= 0:
raise ValueError('radius_constant: {0}, should be >= 0'.format(
raise ValueError("radius_constant: {0}, should be >= 0".format(
radius_constant
))
if delta <= 0:
raise ValueError('delta: {0}, should be >= 0'.format(
raise ValueError("delta: {0}, should be >= 0".format(
delta
))
self.C = C # pylint: disable=invalid-name
self.C = c_arg # pylint: disable=invalid-name
self.delta = delta
self.radius_constant = radius_constant
self.dtype = dtype
self.reg_lambda = tf.constant(reg_lambda, dtype=self.dtype)
super(StrongConvexHuber, self).__init__(
name='strongconvexhuber',
name="strongconvexhuber",
reduction=reduction,
)
@ -179,7 +180,7 @@ class StrongConvexHuber(losses.Loss, StrongConvexMixin):
max_class_weight = self.max_class_weight(class_weight, self.dtype)
delta = _ops.convert_to_tensor_v2(self.delta,
dtype=self.dtype
)
)
return self.C * max_class_weight / (delta *
tf.constant(2, dtype=self.dtype)) + \
self.reg_lambda
@ -213,53 +214,53 @@ class StrongConvexBinaryCrossentropy(
def __init__(self,
reg_lambda,
C,
c_arg,
radius_constant,
from_logits=True,
label_smoothing=0,
reduction=losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE,
dtype=tf.float32):
"""
"""StrongConvexBinaryCrossentropy class.
Args:
reg_lambda: Weight regularization constant
C: Penalty parameter C of the loss term
c_arg: Penalty parameter C of the loss term
radius_constant: constant defining the length of the radius
reduction: reduction type to use. See super class
from_logits: True if the input are unscaled logits. False if they are
already scaled.
label_smoothing: amount of smoothing to perform on labels
relaxation of trust in labels, e.g. (1 -> 1-x, 0 -> 0+x). Note, the
impact of this parameter's effect on privacy is not known and thus the
default should be used.
name: Name of the loss instance
reduction: reduction type to use. See super class
dtype: tf datatype to use for tensor conversions.
"""
if label_smoothing != 0:
logging.warning('The impact of label smoothing on privacy is unknown. '
'Use label smoothing at your own risk as it may not '
'guarantee privacy.')
logging.warning("The impact of label smoothing on privacy is unknown. "
"Use label smoothing at your own risk as it may not "
"guarantee privacy.")
if reg_lambda <= 0:
raise ValueError("reg lambda: {0} must be positive".format(reg_lambda))
if C <= 0:
raise ValueError('c: {0}, should be >= 0'.format(C))
if c_arg <= 0:
raise ValueError("c: {0}, should be >= 0".format(c_arg))
if radius_constant <= 0:
raise ValueError('radius_constant: {0}, should be >= 0'.format(
raise ValueError("radius_constant: {0}, should be >= 0".format(
radius_constant
))
self.dtype = dtype
self.C = C # pylint: disable=invalid-name
self.C = c_arg # pylint: disable=invalid-name
self.reg_lambda = tf.constant(reg_lambda, dtype=self.dtype)
super(StrongConvexBinaryCrossentropy, self).__init__(
reduction=reduction,
name='strongconvexbinarycrossentropy',
name="strongconvexbinarycrossentropy",
from_logits=from_logits,
label_smoothing=label_smoothing,
)
self.radius_constant = radius_constant
def call(self, y_true, y_pred):
"""Computes loss
"""Computes loss.
Args:
y_true: Ground truth values.

View file

@ -125,17 +125,21 @@ class BoltonModel(Model): # pylint: disable=abstract-method
4. Use a strongly convex loss function (see compile)
See super implementation for more details.
Args:
x:
y:
batch_size:
class_weight: the class weights to be used. Can be a scalar or 1D tensor
whose dim == n_classes.
n_samples: the number of individual samples in x.
epsilon: privacy parameter, which trades off between utility an privacy.
See the bolton paper for more description.
noise_distribution: the distribution to pull noise from.
steps_per_epoch:
Args:
x:
y:
batch_size:
class_weight: the class weights to be used. Can be a scalar or 1D tensor
whose dim == n_classes.
n_samples: the number of individual samples in x.
epsilon: privacy parameter, which trades off between utility an privacy.
See the bolton paper for more description.
noise_distribution: the distribution to pull noise from.
steps_per_epoch:
kwargs: kwargs to keras Model.fit. See super.
Returns:
output
"""
if class_weight is None:
class_weight_ = self.calculate_class_weights(class_weight)

View file

@ -32,10 +32,10 @@ from privacy.bolton.optimizers import Bolton
class TestLoss(losses.Loss, StrongConvexMixin):
"""Test loss function for testing Bolton model."""
def __init__(self, reg_lambda, C_arg, radius_constant, name='test'):
def __init__(self, reg_lambda, c_arg, radius_constant, name='test'):
super(TestLoss, self).__init__(name=name)
self.reg_lambda = reg_lambda
self.C = C_arg # pylint: disable=invalid-name
self.C = c_arg # pylint: disable=invalid-name
self.radius_constant = radius_constant
def radius(self):
@ -506,6 +506,7 @@ class FitTests(keras_parameterized.TestCase):
'num_classes': 2,
'err_msg': 'Detected array length:'},
])
def test_class_errors(self,
class_weights,
class_counts,

View file

@ -68,10 +68,10 @@ class TestModel(Model): # pylint: disable=abstract-method
class TestLoss(losses.Loss, StrongConvexMixin):
"""Test loss function for testing Bolton model."""
def __init__(self, reg_lambda, C_arg, radius_constant, name='test'):
def __init__(self, reg_lambda, c_arg, radius_constant, name='test'):
super(TestLoss, self).__init__(name=name)
self.reg_lambda = reg_lambda
self.C = C_arg # pylint: disable=invalid-name
self.C = c_arg # pylint: disable=invalid-name
self.radius_constant = radius_constant
def radius(self):
@ -80,7 +80,7 @@ class TestLoss(losses.Loss, StrongConvexMixin):
W is a convex set that forms the hypothesis space.
Returns:
radius
a tensor
"""
return _ops.convert_to_tensor_v2(self.radius_constant, dtype=tf.float32)
@ -107,7 +107,7 @@ class TestLoss(losses.Loss, StrongConvexMixin):
class_weight: class weights used
Returns:
L
constant L
"""
return _ops.convert_to_tensor_v2(1, dtype=tf.float32)