forked from 626_privacy/tensorflow_privacy
Implement and test a registry function for tfm.nlp.layers.PositionEmbedding
.
PiperOrigin-RevId: 565450719
This commit is contained in:
parent
c7db4fa8cb
commit
e20c92243a
4 changed files with 260 additions and 0 deletions
|
@ -98,6 +98,31 @@ py_test(
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
py_library(
|
||||||
|
name = "nlp_position_embedding",
|
||||||
|
srcs = ["nlp_position_embedding.py"],
|
||||||
|
srcs_version = "PY3",
|
||||||
|
deps = [
|
||||||
|
"//tensorflow_privacy/privacy/fast_gradient_clipping:common_manip_utils",
|
||||||
|
"//tensorflow_privacy/privacy/fast_gradient_clipping:type_aliases",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
py_test(
|
||||||
|
name = "nlp_position_embedding_test",
|
||||||
|
srcs = ["nlp_position_embedding_test.py"],
|
||||||
|
python_version = "PY3",
|
||||||
|
shard_count = 6,
|
||||||
|
srcs_version = "PY3",
|
||||||
|
deps = [
|
||||||
|
":dense",
|
||||||
|
":nlp_position_embedding",
|
||||||
|
"//tensorflow_privacy/privacy/fast_gradient_clipping:clip_grads",
|
||||||
|
"//tensorflow_privacy/privacy/fast_gradient_clipping:common_test_utils",
|
||||||
|
"//tensorflow_privacy/privacy/fast_gradient_clipping:layer_registry",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
py_library(
|
py_library(
|
||||||
name = "layer_normalization",
|
name = "layer_normalization",
|
||||||
srcs = ["layer_normalization.py"],
|
srcs = ["layer_normalization.py"],
|
||||||
|
|
|
@ -0,0 +1,65 @@
|
||||||
|
# Copyright 2023, The TensorFlow Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""Fast clipping function for `tfm.nlp.layers.OnDeviceEmbedding`."""
|
||||||
|
|
||||||
|
from collections.abc import Mapping, Sequence
|
||||||
|
from typing import Any, Optional
|
||||||
|
import tensorflow as tf
|
||||||
|
from tensorflow_privacy.privacy.fast_gradient_clipping import common_manip_utils
|
||||||
|
from tensorflow_privacy.privacy.fast_gradient_clipping import type_aliases
|
||||||
|
|
||||||
|
|
||||||
|
def nlp_position_embedding_layer_computation(
|
||||||
|
layer_instance: tf.keras.layers.Layer,
|
||||||
|
input_args: Sequence[Any],
|
||||||
|
input_kwargs: Mapping[str, Any],
|
||||||
|
tape: tf.GradientTape,
|
||||||
|
num_microbatches: Optional[tf.Tensor] = None,
|
||||||
|
) -> type_aliases.RegistryFunctionOutput:
|
||||||
|
"""Registry function for `tfm.nlp.layers.PositionEmbedding`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
layer_instance: A `tfm.nlp.layers.PositionEmbedding` instance.
|
||||||
|
input_args: See `dense_layer_computation()` in `dense.py`.
|
||||||
|
input_kwargs: See `dense_layer_computation()` in `dense.py`.
|
||||||
|
tape: See `dense_layer_computation()` in `dense.py`.
|
||||||
|
num_microbatches: See `dense_layer_computation()` in `dense.py`.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
See `dense_layer_computation()` in `dense.py`.
|
||||||
|
"""
|
||||||
|
if input_kwargs:
|
||||||
|
raise ValueError("Embedding layer calls should not receive kwargs.")
|
||||||
|
del input_kwargs
|
||||||
|
if len(input_args) != 1:
|
||||||
|
raise ValueError("Only layer inputs of length 1 are permitted.")
|
||||||
|
input_ids = tf.cast(*input_args, tf.int32)
|
||||||
|
base_vars = layer_instance(input_ids)
|
||||||
|
tape.watch(base_vars)
|
||||||
|
|
||||||
|
def sqr_norm_fn(grads):
|
||||||
|
broadcast_axes = list(range(len(grads.shape)))
|
||||||
|
del broadcast_axes[layer_instance._seq_axis] # pylint: disable=protected-access
|
||||||
|
del broadcast_axes[-1], broadcast_axes[0]
|
||||||
|
reduced_grads = tf.reduce_sum(grads, axis=broadcast_axes)
|
||||||
|
if num_microbatches is not None:
|
||||||
|
reduced_grads = common_manip_utils.maybe_add_microbatch_axis(
|
||||||
|
reduced_grads,
|
||||||
|
num_microbatches,
|
||||||
|
)
|
||||||
|
reduced_grads = tf.reduce_sum(reduced_grads, axis=1)
|
||||||
|
reduction_axes = tf.range(1, tf.rank(reduced_grads))
|
||||||
|
return tf.reduce_sum(tf.square(reduced_grads), axis=reduction_axes)
|
||||||
|
|
||||||
|
return base_vars, base_vars, sqr_norm_fn
|
|
@ -0,0 +1,140 @@
|
||||||
|
# Copyright 2023, The TensorFlow Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from absl.testing import parameterized
|
||||||
|
import tensorflow as tf
|
||||||
|
import tensorflow_models as tfm
|
||||||
|
from tensorflow_privacy.privacy.fast_gradient_clipping import common_test_utils
|
||||||
|
from tensorflow_privacy.privacy.fast_gradient_clipping import layer_registry
|
||||||
|
from tensorflow_privacy.privacy.fast_gradient_clipping.registry_functions import dense
|
||||||
|
from tensorflow_privacy.privacy.fast_gradient_clipping.registry_functions import nlp_position_embedding
|
||||||
|
|
||||||
|
|
||||||
|
def get_nlp_position_embedding_model_generators():
|
||||||
|
return {
|
||||||
|
'func1': common_test_utils.make_one_layer_functional_model,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def get_nlp_position_embedding_inputs():
|
||||||
|
"""Generates input_data."""
|
||||||
|
# (input_dims, max_length, seq_axis)
|
||||||
|
return [
|
||||||
|
# Rank-2 Tensors
|
||||||
|
([3, 2], 6, 1),
|
||||||
|
([3, 2], 3, 1),
|
||||||
|
# Rank-3 Tensors
|
||||||
|
([4, 3, 2], 8, 1),
|
||||||
|
([4, 3, 2], 4, 1),
|
||||||
|
([4, 3, 2], 6, 2),
|
||||||
|
([4, 3, 2], 3, 2),
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
def get_nlp_position_embedding_layer_registries():
|
||||||
|
dbl_registry = layer_registry.LayerRegistry()
|
||||||
|
dbl_registry.insert(tf.keras.layers.Dense, dense.dense_layer_computation)
|
||||||
|
dbl_registry.insert(
|
||||||
|
tfm.nlp.layers.PositionEmbedding,
|
||||||
|
nlp_position_embedding.nlp_position_embedding_layer_computation,
|
||||||
|
)
|
||||||
|
return {
|
||||||
|
'embed_and_dense': dbl_registry,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class GradNormTest(tf.test.TestCase, parameterized.TestCase):
|
||||||
|
|
||||||
|
def setUp(self):
|
||||||
|
super().setUp()
|
||||||
|
self.strategy = tf.distribute.get_strategy()
|
||||||
|
self.using_tpu = False
|
||||||
|
|
||||||
|
# TODO(weiweikong): Test sparse input tensors when the GitHub CI environment
|
||||||
|
# supports them for embeddings.
|
||||||
|
@parameterized.product(
|
||||||
|
input_data=get_nlp_position_embedding_inputs(),
|
||||||
|
model_name=list(get_nlp_position_embedding_model_generators()),
|
||||||
|
layer_registry_name=list(get_nlp_position_embedding_layer_registries()),
|
||||||
|
num_microbatches=[None, 2],
|
||||||
|
is_eager=[True, False],
|
||||||
|
)
|
||||||
|
def test_gradient_norms_on_various_models(
|
||||||
|
self,
|
||||||
|
input_data,
|
||||||
|
model_name,
|
||||||
|
layer_registry_name,
|
||||||
|
num_microbatches,
|
||||||
|
is_eager,
|
||||||
|
):
|
||||||
|
# Parse inputs to generate test data.
|
||||||
|
input_dims, max_length, seq_axis = input_data
|
||||||
|
|
||||||
|
# Load shared assets to all devices.
|
||||||
|
with self.strategy.scope():
|
||||||
|
|
||||||
|
def embed_layer_generator(a, b):
|
||||||
|
del a, b # Unused input variables.
|
||||||
|
return tfm.nlp.layers.PositionEmbedding(
|
||||||
|
max_length=max_length,
|
||||||
|
seq_axis=seq_axis,
|
||||||
|
)
|
||||||
|
|
||||||
|
batch_size = 6
|
||||||
|
dummy_output_dims = [1]
|
||||||
|
example_size = tf.reduce_prod(input_dims)
|
||||||
|
example_values = tf.range(batch_size * example_size, dtype=tf.float32)
|
||||||
|
x_batch = tf.reshape(example_values, [batch_size] + input_dims)
|
||||||
|
model = common_test_utils.get_model_from_generator(
|
||||||
|
model_generator=(
|
||||||
|
get_nlp_position_embedding_model_generators()[model_name]
|
||||||
|
),
|
||||||
|
layer_generator=embed_layer_generator,
|
||||||
|
input_dims=input_dims,
|
||||||
|
output_dims=dummy_output_dims,
|
||||||
|
is_eager=is_eager,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Define the main testing ops. These may be later compiled to a Graph op.
|
||||||
|
def test_op():
|
||||||
|
return common_test_utils.get_computed_and_true_norms_from_model(
|
||||||
|
model=model,
|
||||||
|
per_example_loss_fn=None,
|
||||||
|
num_microbatches=num_microbatches,
|
||||||
|
x_batch=x_batch,
|
||||||
|
registry=(
|
||||||
|
get_nlp_position_embedding_layer_registries()[layer_registry_name]
|
||||||
|
),
|
||||||
|
partial=None,
|
||||||
|
)
|
||||||
|
|
||||||
|
# TPUs can only run `tf.function`-decorated functions.
|
||||||
|
if self.using_tpu:
|
||||||
|
test_op = tf.function(test_op, autograph=False)
|
||||||
|
|
||||||
|
# Set up the device ops and run the test.
|
||||||
|
computed_norms, true_norms = self.strategy.run(test_op)
|
||||||
|
# TPUs return replica contexts, which must be unwrapped.
|
||||||
|
if self.using_tpu:
|
||||||
|
common_test_utils.assert_replica_values_are_close(self, computed_norms)
|
||||||
|
common_test_utils.assert_replica_values_are_close(self, true_norms)
|
||||||
|
computed_norms = computed_norms.values[0]
|
||||||
|
true_norms = true_norms.values[0]
|
||||||
|
expected_size = num_microbatches or batch_size
|
||||||
|
self.assertEqual(tf.shape(computed_norms)[0], expected_size)
|
||||||
|
self.assertAllClose(computed_norms, true_norms, rtol=1e-3, atol=1e-2)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
tf.test.main()
|
|
@ -0,0 +1,30 @@
|
||||||
|
# Copyright 2023, The TensorFlow Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import tensorflow as tf
|
||||||
|
from tensorflow_privacy.privacy.fast_gradient_clipping import common_test_utils
|
||||||
|
from tensorflow_privacy.privacy.fast_gradient_clipping.registry_functions import nlp_position_embedding_test
|
||||||
|
|
||||||
|
|
||||||
|
class GradNormTpuTest(nlp_position_embedding_test.GradNormTest):
|
||||||
|
|
||||||
|
def setUp(self):
|
||||||
|
super(nlp_position_embedding_test.GradNormTest, self).setUp()
|
||||||
|
self.strategy = common_test_utils.create_tpu_strategy()
|
||||||
|
self.assertIn('TPU', self.strategy.extended.worker_devices[0])
|
||||||
|
self.using_tpu = True
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
tf.test.main()
|
Loading…
Reference in a new issue