From e42b57446531cc756661444a1debff696347ef37 Mon Sep 17 00:00:00 2001 From: "A. Unique TensorFlower" Date: Mon, 12 Aug 2024 10:44:57 -0700 Subject: [PATCH] Sparsity Preserving DP-SGD in TF Privacy Add support for adding sparsity preserving noise in add_aggregate_noise See https://research.google/blog/sparsity-preserving-differentially-private-training/ for more details on the algorithm. PiperOrigin-RevId: 662148309 --- .../privacy/fast_gradient_clipping/BUILD | 1 + .../fast_gradient_clipping/noise_utils.py | 89 ++++++++++++++++-- .../noise_utils_test.py | 92 +++++++++++++++++++ 3 files changed, 172 insertions(+), 10 deletions(-) diff --git a/tensorflow_privacy/privacy/fast_gradient_clipping/BUILD b/tensorflow_privacy/privacy/fast_gradient_clipping/BUILD index f5b920f..acabca7 100644 --- a/tensorflow_privacy/privacy/fast_gradient_clipping/BUILD +++ b/tensorflow_privacy/privacy/fast_gradient_clipping/BUILD @@ -84,6 +84,7 @@ py_library( py_library( name = "noise_utils", srcs = ["noise_utils.py"], + deps = ["//tensorflow_privacy/privacy/sparsity_preserving_noise:sparse_noise_utils"], ) py_test( diff --git a/tensorflow_privacy/privacy/fast_gradient_clipping/noise_utils.py b/tensorflow_privacy/privacy/fast_gradient_clipping/noise_utils.py index 7dd2f15..f1ace9e 100644 --- a/tensorflow_privacy/privacy/fast_gradient_clipping/noise_utils.py +++ b/tensorflow_privacy/privacy/fast_gradient_clipping/noise_utils.py @@ -14,10 +14,21 @@ """Utility functions that help in adding noise to gradients.""" from collections.abc import Sequence +import dataclasses from typing import Literal, Optional from absl import logging import tensorflow as tf +from tensorflow_privacy.privacy.sparsity_preserving_noise import sparse_noise_utils + + +@dataclasses.dataclass +class SparsityPreservingNoiseConfig: + """Configuration for adding noise to gradients.""" + + sparse_noise_multiplier: float = 0.0 + sparse_selection_threshold: int = 0 + sparse_contribution_counts: Optional[Sequence[tf.SparseTensor]] = None def _infer_loss_reduction_type(model: tf.keras.Model): @@ -44,21 +55,53 @@ def _infer_loss_reduction_type(model: tf.keras.Model): ) +def _add_dense_aggregate_noise( + grad: tf.Tensor, + noise_multiplier: float, + sensitivity: float, +) -> tf.Tensor: + """Adds dense noise to a dense gradient.""" + return grad + tf.random.normal( + tf.shape(grad), mean=0.0, stddev=noise_multiplier * sensitivity + ) + + +def _add_sparse_aggregate_noise( + grad: tf.IndexedSlices, + contribution_counts: tf.SparseTensor, + noise_multiplier: float, + noise_multiplier_sparse: float, + sensitivity: float, + sparse_selection_threshold: int, +) -> tf.IndexedSlices: + """Adds sparse noise to a sparse gradient.""" + return sparse_noise_utils.add_sparse_noise( + grad=grad, + contribution_counts=contribution_counts, + noise_multiplier=noise_multiplier, + noise_multiplier_sparse=noise_multiplier_sparse, + l2_norm_clip=sensitivity, + threshold=sparse_selection_threshold, + ) + + def add_aggregate_noise( - clipped_grads: list[tf.Tensor], + clipped_grads: list[tf.Tensor | tf.IndexedSlices], batch_size: tf.Tensor, l2_norm_clip: float, noise_multiplier: float, loss_reduction: Optional[Literal['mean', 'sum']] = None, loss_model: Optional[tf.keras.Model] = None, -) -> Sequence[tf.Tensor]: + sparse_noise_config: Optional[SparsityPreservingNoiseConfig] = None, +) -> Sequence[tf.Tensor | tf.IndexedSlices]: """Adds noise to a collection of clipped gradients. The magnitude of the noise depends on the aggregation strategy of the input model's loss function. Args: - clipped_grads: A list of `tf.Tensor`s representing the clipped gradients. + clipped_grads: A list of `tf.Tensor`s or `tf.IndexedSlices`s representing + the clipped gradients. batch_size: The batch size. Used for normalizing the noise when `loss_reduction` is 'sum'. l2_norm_clip: Clipping norm (max L2 norm of each gradient). @@ -68,11 +111,14 @@ def add_aggregate_noise( aggregation type must be inferred from `input_model.loss`. loss_model: An optional `tf.keras.Model` used to infer the loss reduction strategy from if `loss_reduction` is `None`. + sparse_noise_config: A `SparsityPreservingNoiseConfig` instance containing + the configuration for adding sparse noise. If None, all noise added is + dense. Returns: A list of tensors containing the clipped gradients, but with the right - amount of Gaussian noise added to them (depending on the reduction - strategy of the loss function). + amount of Gaussian or sparse Gaussain noise added to them (depending on + the reduction strategy of the loss function). Raises: ValueError: If both `loss_model` and `loss_reduction` are `None` or if @@ -103,13 +149,36 @@ def add_aggregate_noise( 'Assuming that the model loss reduction is `SUM_OVER_BATCH_SIZE`.' ) + if sparse_noise_config is None: + sparse_contribution_counts = tf.nest.map_structure( + lambda x: None, clipped_grads + ) + else: + sparse_contribution_counts = sparse_noise_config.sparse_contribution_counts + scale = l2_norm_clip if loss_reduction == 'mean': scale /= tf.cast(batch_size, tf.float32) - def add_noise(g): - return g + tf.random.normal( - tf.shape(g), mean=0.0, stddev=noise_multiplier * scale - ) + def add_noise(grad, contribution_counts): + if ( + sparse_noise_config is not None + and isinstance(grad, tf.IndexedSlices) + and contribution_counts is not None + ): + return _add_sparse_aggregate_noise( + grad=grad, + contribution_counts=contribution_counts, + noise_multiplier=noise_multiplier, + noise_multiplier_sparse=sparse_noise_config.sparse_noise_multiplier, + sensitivity=scale, + sparse_selection_threshold=sparse_noise_config.sparse_selection_threshold, + ) + else: + return _add_dense_aggregate_noise( + grad=grad, noise_multiplier=noise_multiplier, sensitivity=scale + ) - return tf.nest.map_structure(add_noise, clipped_grads) + return tf.nest.map_structure( + add_noise, clipped_grads, sparse_contribution_counts + ) diff --git a/tensorflow_privacy/privacy/fast_gradient_clipping/noise_utils_test.py b/tensorflow_privacy/privacy/fast_gradient_clipping/noise_utils_test.py index 9d5cac3..880b8d3 100644 --- a/tensorflow_privacy/privacy/fast_gradient_clipping/noise_utils_test.py +++ b/tensorflow_privacy/privacy/fast_gradient_clipping/noise_utils_test.py @@ -70,3 +70,95 @@ class NoiseUtilsTest(tf.test.TestCase, parameterized.TestCase): computed_std = np.std(noised_grads[0] - clipped_grads[0]) expected_std = l2_norm_clip * noise_multiplier * scale self.assertNear(computed_std, expected_std, 0.1 * expected_std) + + @parameterized.product( + l2_norm_clip=[3.0, 5.0], + noise_multiplier=[2.0, 4.0], + sparse_noise_multiplier=[1.0], + batch_size=[1, 2, 10], + model_fn_reduction=[None, 'auto', 'sum_over_batch_size', 'sum'], + noise_fn_reduction=[None, 'mean', 'sum'], + ) + def test_sparse_noise_is_computed_correctly( + self, + l2_norm_clip, + noise_multiplier, + sparse_noise_multiplier, + batch_size, + model_fn_reduction, + noise_fn_reduction, + ): + # Skip invalid combinations. + if model_fn_reduction is None and noise_fn_reduction is None: + return + if model_fn_reduction is not None and noise_fn_reduction is not None: + return + # Make an simple model container for storing the loss. + if model_fn_reduction is not None: + linear_model = tf.keras.Sequential([tf.keras.layers.Dense(1)]) + linear_model.compile( + loss=tf.keras.losses.MeanSquaredError(reduction=model_fn_reduction) + ) + else: + linear_model = None + # The main computation is done on a deterministic dummy vector. + num_units = 100 + dense_grad = tf.expand_dims(np.arange(num_units, dtype=np.float32), axis=-1) + sparse_grad = tf.IndexedSlices( + values=tf.ones((3, 4)), + indices=tf.constant([0, 3, 5]), + dense_shape=tf.constant([8, 4]), + ) + sparse_grad_contribution_counts = tf.SparseTensor( + indices=[[0], [3], [5]], + values=[10.0, 10.0, 20.0], + dense_shape=[8], + ) + + sparse_noise_config = noise_utils.SparsityPreservingNoiseConfig( + sparse_noise_multiplier=sparse_noise_multiplier, + sparse_selection_threshold=8, + sparse_contribution_counts=[None, sparse_grad_contribution_counts], + ) + + sparse_noised_grad, dense_noised_grad = noise_utils.add_aggregate_noise( + clipped_grads=[dense_grad, sparse_grad], + batch_size=batch_size, + l2_norm_clip=l2_norm_clip, + noise_multiplier=noise_multiplier, + loss_model=linear_model, + sparse_noise_config=sparse_noise_config, + ) + self.assertContainsSubset( + sparse_grad.indices.numpy().tolist(), + sparse_noised_grad.indices.numpy().tolist(), + ) + sparse_noised_grad_dense = tf.scatter_nd( + tf.reshape(sparse_noised_grad.indices, (-1, 1)), + sparse_noised_grad.values, + shape=(8, 4), + ).numpy() + sparse_noised_grad_valid_indices = sparse_noised_grad_dense[ + sparse_grad.indices.numpy() + ] + sparse_grad_values = sparse_grad.values.numpy() + self.assertTrue( + np.all( + np.not_equal(sparse_noised_grad_valid_indices, sparse_grad_values) + ) + ) + scale = ( + 1.0 + if noise_fn_reduction == 'sum' or model_fn_reduction == 'sum' + else 1.0 / batch_size + ) + # The only measure that varies is the standard deviation of the variation. + expected_std = l2_norm_clip * noise_multiplier * scale + + sparse_computed_std = np.std( + sparse_noised_grad_valid_indices - sparse_grad_values + ) + self.assertNear(sparse_computed_std, expected_std, 0.1 * expected_std) + + dense_computed_std = np.std(dense_noised_grad - dense_grad) + self.assertNear(dense_computed_std, expected_std, 0.1 * expected_std)