From ec18db5ec5d34922af90d39a94be365a9a4f5685 Mon Sep 17 00:00:00 2001 From: Christopher Choquette Choo Date: Thu, 13 Jun 2019 01:01:31 -0400 Subject: [PATCH] Working bolton model without unit tests. -- moving to Bolton Optimizer Model is now just a convenient wrapper and example for users. Optimizer holds ALL Bolton privacy requirements. Optimizer is used as a context manager, and must be passed the model's layers. Unit tests incomplete, committing for visibility into the design. --- privacy/bolton/loss_test.py | 110 ++++++-- privacy/bolton/model.py | 448 ++++++++++++++++++++----------- privacy/bolton/model_test.py | 190 +++++++------ privacy/bolton/optimizer.py | 254 ++++++++++++++++-- privacy/bolton/optimizer_test.py | 256 ++++++++++++++---- 5 files changed, 913 insertions(+), 345 deletions(-) diff --git a/privacy/bolton/loss_test.py b/privacy/bolton/loss_test.py index bb7dc53..ddb4861 100644 --- a/privacy/bolton/loss_test.py +++ b/privacy/bolton/loss_test.py @@ -18,23 +18,17 @@ from __future__ import division from __future__ import print_function import tensorflow as tf -from tensorflow.python.platform import test from tensorflow.python.keras import keras_parameterized -from tensorflow.python.keras.optimizer_v2 import adam -from tensorflow.python.keras.optimizer_v2 import adagrad -from tensorflow.python.keras.optimizer_v2 import gradient_descent -from tensorflow.python.keras import losses from tensorflow.python.framework import test_util -from privacy.bolton import model +from tensorflow.python.keras.regularizers import L1L2 +from absl.testing import parameterized from privacy.bolton.loss import StrongConvexBinaryCrossentropy from privacy.bolton.loss import StrongConvexHuber from privacy.bolton.loss import StrongConvexMixin -from absl.testing import parameterized -from absl.testing import absltest -from tensorflow.python.keras.regularizers import L1L2 -class StrongConvexTests(keras_parameterized.TestCase): +class StrongConvexMixinTests(keras_parameterized.TestCase): + """Tests for the StrongConvexMixin""" @parameterized.named_parameters([ {'testcase_name': 'beta not implemented', 'fn': 'beta', @@ -50,6 +44,12 @@ class StrongConvexTests(keras_parameterized.TestCase): 'args': []}, ]) def test_not_implemented(self, fn, args): + """Test that the given fn's are not implemented on the mixin. + + Args: + fn: fn on Mixin to test + args: arguments to fn of Mixin + """ with self.assertRaises(NotImplementedError): loss = StrongConvexMixin() getattr(loss, fn, None)(*args) @@ -60,6 +60,12 @@ class StrongConvexTests(keras_parameterized.TestCase): 'args': []}, ]) def test_return_none(self, fn, args): + """Test that fn of Mixin returns None + + Args: + fn: fn of Mixin to test + args: arguments to fn of Mixin + """ loss = StrongConvexMixin() ret = getattr(loss, fn, None)(*args) self.assertEqual(ret, None) @@ -71,44 +77,56 @@ class BinaryCrossesntropyTests(keras_parameterized.TestCase): @parameterized.named_parameters([ {'testcase_name': 'normal', 'reg_lambda': 1, - 'c': 1, + 'C': 1, 'radius_constant': 1 }, ]) - def test_init_params(self, reg_lambda, c, radius_constant): + def test_init_params(self, reg_lambda, C, radius_constant): + """Test initialization for given arguments + Args: + reg_lambda: initialization value for reg_lambda arg + C: initialization value for C arg + radius_constant: initialization value for radius_constant arg + """ # test valid domains for each variable - loss = StrongConvexBinaryCrossentropy(reg_lambda, c, radius_constant) + loss = StrongConvexBinaryCrossentropy(reg_lambda, C, radius_constant) self.assertIsInstance(loss, StrongConvexBinaryCrossentropy) @parameterized.named_parameters([ {'testcase_name': 'negative c', 'reg_lambda': 1, - 'c': -1, + 'C': -1, 'radius_constant': 1 }, {'testcase_name': 'negative radius', 'reg_lambda': 1, - 'c': 1, + 'C': 1, 'radius_constant': -1 }, {'testcase_name': 'negative lambda', 'reg_lambda': -1, - 'c': 1, + 'C': 1, 'radius_constant': 1 }, ]) - def test_bad_init_params(self, reg_lambda, c, radius_constant): + def test_bad_init_params(self, reg_lambda, C, radius_constant): + """Test invalid domain for given params. Should return ValueError + Args: + reg_lambda: initialization value for reg_lambda arg + C: initialization value for C arg + radius_constant: initialization value for radius_constant arg + """ # test valid domains for each variable with self.assertRaises(ValueError): - loss = StrongConvexBinaryCrossentropy(reg_lambda, c, radius_constant) + StrongConvexBinaryCrossentropy(reg_lambda, C, radius_constant) @test_util.run_all_in_graph_and_eager_modes @parameterized.named_parameters([ # [] for compatibility with tensorflow loss calculation {'testcase_name': 'both positive', - 'logits': [10000], - 'y_true': [1], - 'result': 0, + 'logits': [10000], + 'y_true': [1], + 'result': 0, }, {'testcase_name': 'positive gradient negative logits', 'logits': [-10000], @@ -127,6 +145,12 @@ class BinaryCrossesntropyTests(keras_parameterized.TestCase): }, ]) def test_calculation(self, logits, y_true, result): + """Test the call method to ensure it returns the correct value + Args: + logits: unscaled output of model + y_true: label + result: correct loss calculation value + """ logits = tf.Variable(logits, False, dtype=tf.float32) y_true = tf.Variable(y_true, False, dtype=tf.float32) loss = StrongConvexBinaryCrossentropy(0.00001, 1, 1) @@ -160,6 +184,13 @@ class BinaryCrossesntropyTests(keras_parameterized.TestCase): }, ]) def test_fns(self, init_args, fn, args, result): + """Test that fn of BinaryCrossentropy loss returns the correct result + Args: + init_args: init values for loss instance + fn: the fn to test + args: the arguments to above function + result: the correct result from the fn + """ loss = StrongConvexBinaryCrossentropy(*init_args) expected = getattr(loss, fn, lambda: 'fn not found')(*args) if hasattr(expected, 'numpy') and hasattr(result, 'numpy'): # both tensor @@ -183,6 +214,12 @@ class HuberTests(keras_parameterized.TestCase): }, ]) def test_init_params(self, reg_lambda, c, radius_constant, delta): + """Test initialization for given arguments + Args: + reg_lambda: initialization value for reg_lambda arg + C: initialization value for C arg + radius_constant: initialization value for radius_constant arg + """ # test valid domains for each variable loss = StrongConvexHuber(reg_lambda, c, radius_constant, delta) self.assertIsInstance(loss, StrongConvexHuber) @@ -214,18 +251,24 @@ class HuberTests(keras_parameterized.TestCase): }, ]) def test_bad_init_params(self, reg_lambda, c, radius_constant, delta): + """Test invalid domain for given params. Should return ValueError + Args: + reg_lambda: initialization value for reg_lambda arg + C: initialization value for C arg + radius_constant: initialization value for radius_constant arg + """ # test valid domains for each variable with self.assertRaises(ValueError): - loss = StrongConvexHuber(reg_lambda, c, radius_constant, delta) + StrongConvexHuber(reg_lambda, c, radius_constant, delta) # test the bounds and test varied delta's @test_util.run_all_in_graph_and_eager_modes @parameterized.named_parameters([ {'testcase_name': 'delta=1,y_true=1 z>1+h decision boundary', - 'logits': 2.1, - 'y_true': 1, - 'delta': 1, - 'result': 0, + 'logits': 2.1, + 'y_true': 1, + 'delta': 1, + 'result': 0, }, {'testcase_name': 'delta=1,y_true=1 z<1+h decision boundary', 'logits': 1.9, @@ -277,6 +320,12 @@ class HuberTests(keras_parameterized.TestCase): }, ]) def test_calculation(self, logits, y_true, delta, result): + """Test the call method to ensure it returns the correct value + Args: + logits: unscaled output of model + y_true: label + result: correct loss calculation value + """ logits = tf.Variable(logits, False, dtype=tf.float32) y_true = tf.Variable(y_true, False, dtype=tf.float32) loss = StrongConvexHuber(0.00001, 1, 1, delta) @@ -310,6 +359,13 @@ class HuberTests(keras_parameterized.TestCase): }, ]) def test_fns(self, init_args, fn, args, result): + """Test that fn of BinaryCrossentropy loss returns the correct result + Args: + init_args: init values for loss instance + fn: the fn to test + args: the arguments to above function + result: the correct result from the fn + """ loss = StrongConvexHuber(*init_args) expected = getattr(loss, fn, lambda: 'fn not found')(*args) if hasattr(expected, 'numpy') and hasattr(result, 'numpy'): # both tensor @@ -322,4 +378,4 @@ class HuberTests(keras_parameterized.TestCase): if __name__ == '__main__': - tf.test.main() \ No newline at end of file + tf.test.main() diff --git a/privacy/bolton/model.py b/privacy/bolton/model.py index 78ceb7c..a6731fe 100644 --- a/privacy/bolton/model.py +++ b/privacy/bolton/model.py @@ -21,12 +21,12 @@ from tensorflow.python.keras.models import Model from tensorflow.python.keras import optimizers from tensorflow.python.framework import ops as _ops from privacy.bolton.loss import StrongConvexMixin -from privacy.bolton.optimizer import Private +from privacy.bolton.optimizer import Bolton _accepted_distributions = ['laplace'] -class Bolton(Model): +class BoltonModel(Model): """ Bolton episilon-delta model Uses 4 key steps to achieve privacy guarantees: @@ -42,8 +42,7 @@ class Bolton(Model): def __init__(self, n_classes, - epsilon, - noise_distribution='laplace', + # noise_distribution='laplace', seed=1, dtype=tf.float32 ): @@ -58,47 +57,22 @@ class Bolton(Model): dtype: data type to use for tensors """ - class MyCustomCallback(tf.keras.callbacks.Callback): - """Custom callback for bolton training requirements. - Implements steps (see Bolton class): - 2. Projects weights to R after each batch - 3. Limits learning rate - """ - - def on_train_batch_end(self, batch, logs=None): - loss = self.model.loss - self.model.optimizer.limit_learning_rate( - self.model.run_eagerly, - loss.beta(self.model.class_weight), - loss.gamma() - ) - self.model._project_weights_to_r(loss.radius(), False) - - def on_train_end(self, logs=None): - loss = self.model.loss - self.model._project_weights_to_r(loss.radius(), True) - - if epsilon <= 0: - raise ValueError('Detected epsilon: {0}. ' - 'Valid range is 0 < epsilon R-ball and only normalize then. + # + # Returns: + # + # """ + # for layer in self.layers: + # weight_norm = tf.norm(layer.kernel, axis=0) + # if force: + # layer.kernel = layer.kernel / (weight_norm / r) + # elif tf.reduce_sum(tf.cast(weight_norm > r, dtype=self._dtype)) > 0: + # layer.kernel = layer.kernel / (weight_norm / r) - Args: - r: radius of "R-Ball". Scalar to normalize to. - force: True to normalize regardless of previous weight values. - False to check if weights > R-ball and only normalize then. + # def _get_noise(self, distribution, data_size): + # """Sample noise to be added to weights for privacy guarantee + # + # Args: + # distribution: the distribution type to pull noise from + # data_size: the number of samples + # + # Returns: noise in shape of layer's weights to be added to the weights. + # + # """ + # distribution = distribution.lower() + # input_dim = self.layers[0].kernel.numpy().shape[0] + # loss = self.loss + # if distribution == _accepted_distributions[0]: # laplace + # per_class_epsilon = self.epsilon / (self.n_classes) + # l2_sensitivity = (2 * + # loss.lipchitz_constant(self.class_weight)) / \ + # (loss.gamma() * data_size) + # unit_vector = tf.random.normal(shape=(input_dim, self.n_classes), + # mean=0, + # seed=1, + # stddev=1.0, + # dtype=self._dtype) + # unit_vector = unit_vector / tf.math.sqrt( + # tf.reduce_sum(tf.math.square(unit_vector), axis=0) + # ) + # + # beta = l2_sensitivity / per_class_epsilon + # alpha = input_dim # input_dim + # gamma = tf.random.gamma([self.n_classes], + # alpha, + # beta=1 / beta, + # seed=1, + # dtype=self._dtype + # ) + # return unit_vector * gamma + # raise NotImplementedError('Noise distribution: {0} is not ' + # 'a valid distribution'.format(distribution)) - Returns: - """ - for layer in self._layers: - weight_norm = tf.norm(layer.kernel, axis=0) - if force: - layer.kernel = layer.kernel / (weight_norm / r) - elif tf.reduce_sum(tf.cast(weight_norm > r, dtype=self._dtype)) > 0: - layer.kernel = layer.kernel / (weight_norm / r) +if __name__ == '__main__': + import tensorflow as tf - def _get_noise(self, distribution, data_size): - """Sample noise to be added to weights for privacy guarantee + import os + import time + import matplotlib.pyplot as plt - Args: - distribution: the distribution type to pull noise from - data_size: the number of samples + _URL = 'https://people.eecs.berkeley.edu/~tinghuiz/projects/pix2pix/datasets/facades.tar.gz' - Returns: noise in shape of layer's weights to be added to the weights. + path_to_zip = tf.keras.utils.get_file('facades.tar.gz', + origin=_URL, + extract=True) - """ - distribution = distribution.lower() - input_dim = self._layers[0].kernel.numpy().shape[0] - loss = self.loss - if distribution == _accepted_distributions[0]: # laplace - per_class_epsilon = self.epsilon / (self.n_classes) - l2_sensitivity = (2 * - loss.lipchitz_constant(self.class_weight)) / \ - (loss.gamma() * data_size) - unit_vector = tf.random.normal(shape=(input_dim, self.n_classes), - mean=0, - seed=1, - stddev=1.0, - dtype=self._dtype) - unit_vector = unit_vector / tf.math.sqrt( - tf.reduce_sum(tf.math.square(unit_vector), axis=0) - ) + PATH = os.path.join(os.path.dirname(path_to_zip), 'facades/') + BUFFER_SIZE = 400 + BATCH_SIZE = 1 + IMG_WIDTH = 256 + IMG_HEIGHT = 256 - beta = l2_sensitivity / per_class_epsilon - alpha = input_dim # input_dim - gamma = tf.random.gamma([self.n_classes], - alpha, - beta=1 / beta, - seed=1, - dtype=self._dtype - ) - return unit_vector * gamma - raise NotImplementedError('Noise distribution: {0} is not ' - 'a valid distribution'.format(distribution)) + + def load(image_file): + image = tf.io.read_file(image_file) + image = tf.image.decode_jpeg(image) + + w = tf.shape(image)[1] + + w = w // 2 + real_image = image[:, :w, :] + input_image = image[:, w:, :] + + input_image = tf.cast(input_image, tf.float32) + real_image = tf.cast(real_image, tf.float32) + + return input_image, real_image + + + inp, re = load(PATH + 'train/100.jpg') + # casting to int for matplotlib to show the image + plt.figure() + plt.imshow(inp / 255.0) + plt.figure() + plt.imshow(re / 255.0) + + + def resize(input_image, real_image, height, width): + input_image = tf.image.resize(input_image, [height, width], + method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) + real_image = tf.image.resize(real_image, [height, width], + method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) + + return input_image, real_image + + + def random_crop(input_image, real_image): + stacked_image = tf.stack([input_image, real_image], axis=0) + cropped_image = tf.image.random_crop( + stacked_image, size=[2, IMG_HEIGHT, IMG_WIDTH, 3]) + + return cropped_image[0], cropped_image[1] + + + def normalize(input_image, real_image): + input_image = (input_image / 127.5) - 1 + real_image = (real_image / 127.5) - 1 + + return input_image, real_image + + + @tf.function() + def random_jitter(input_image, real_image): + # resizing to 286 x 286 x 3 + input_image, real_image = resize(input_image, real_image, 286, 286) + + # randomly cropping to 256 x 256 x 3 + input_image, real_image = random_crop(input_image, real_image) + + if tf.random.uniform(()) > 0.5: + # random mirroring + input_image = tf.image.flip_left_right(input_image) + real_image = tf.image.flip_left_right(real_image) + + return input_image, real_image + + + def load_image_train(image_file): + input_image, real_image = load(image_file) + input_image, real_image = random_jitter(input_image, real_image) + input_image, real_image = normalize(input_image, real_image) + + return input_image, real_image + + + def load_image_test(image_file): + input_image, real_image = load(image_file) + input_image, real_image = resize(input_image, real_image, + IMG_HEIGHT, IMG_WIDTH) + input_image, real_image = normalize(input_image, real_image) + + return input_image, real_image + + + train_dataset = tf.data.Dataset.list_files(PATH + 'train/*.jpg') + train_dataset = train_dataset.shuffle(BUFFER_SIZE) + train_dataset = train_dataset.map(load_image_train, + num_parallel_calls=tf.data.experimental.AUTOTUNE) + train_dataset = train_dataset.batch(1) + # steps_per_epoch = training_utils.infer_steps_for_dataset( + # train_dataset, None, epochs=1, steps_name='steps') + + # for batch in train_dataset: + # print(batch[1].shape) + test_dataset = tf.data.Dataset.list_files(PATH + 'test/*.jpg') + # shuffling so that for every epoch a different image is generated + # to predict and display the progress of our model. + train_dataset = train_dataset.shuffle(BUFFER_SIZE) + test_dataset = test_dataset.map(load_image_test) + test_dataset = test_dataset.batch(1) + + be = BoltonModel(3, 2) + from tensorflow.python.keras.optimizer_v2 import adam + from privacy.bolton import loss + + test = adam.Adam() + l = loss.StrongConvexBinaryCrossentropy(1, 2, 1) + be.compile(test, l) + print("Eager exeuction: {0}".format(tf.executing_eagerly())) + be.fit(train_dataset, verbose=0, steps_per_epoch=1, n_samples=1) diff --git a/privacy/bolton/model_test.py b/privacy/bolton/model_test.py index c3ca109..53c4c45 100644 --- a/privacy/bolton/model_test.py +++ b/privacy/bolton/model_test.py @@ -32,7 +32,7 @@ from absl.testing import absltest from tensorflow.python.keras.regularizers import L1L2 -class TestLoss(losses.Loss): +class TestLoss(losses.Loss, StrongConvexMixin): """Test loss function for testing Bolton model""" def __init__(self, reg_lambda, C, radius_constant, name='test'): super(TestLoss, self).__init__(name=name) @@ -145,21 +145,25 @@ class InitTests(keras_parameterized.TestCase): self.assertIsInstance(clf, model.Bolton) @parameterized.named_parameters([ - {'testcase_name': 'invalid noise', - 'n_classes': 1, - 'epsilon': 1, - 'noise_distribution': 'not_valid', - 'weights_initializer': tf.initializers.GlorotUniform(), - }, - {'testcase_name': 'invalid epsilon', - 'n_classes': 1, - 'epsilon': -1, - 'noise_distribution': 'laplace', - 'weights_initializer': tf.initializers.GlorotUniform(), - }, + {'testcase_name': 'invalid noise', + 'n_classes': 1, + 'epsilon': 1, + 'noise_distribution': 'not_valid', + 'weights_initializer': tf.initializers.GlorotUniform(), + }, + {'testcase_name': 'invalid epsilon', + 'n_classes': 1, + 'epsilon': -1, + 'noise_distribution': 'laplace', + 'weights_initializer': tf.initializers.GlorotUniform(), + }, ]) def test_bad_init_params( - self, n_classes, epsilon, noise_distribution, weights_initializer): + self, + n_classes, + epsilon, + noise_distribution, + weights_initializer): # test invalid domains for each variable, especially noise seed = 1 with self.assertRaises(ValueError): @@ -204,16 +208,16 @@ class InitTests(keras_parameterized.TestCase): self.assertEqual(clf.loss, loss) @parameterized.named_parameters([ - {'testcase_name': 'Not strong loss', - 'n_classes': 1, - 'loss': losses.BinaryCrossentropy(), - 'optimizer': 'adam', - }, - {'testcase_name': 'Not valid optimizer', - 'n_classes': 1, - 'loss': TestLoss(1, 1, 1), - 'optimizer': 'ada', - } + {'testcase_name': 'Not strong loss', + 'n_classes': 1, + 'loss': losses.BinaryCrossentropy(), + 'optimizer': 'adam', + }, + {'testcase_name': 'Not valid optimizer', + 'n_classes': 1, + 'loss': TestLoss(1, 1, 1), + 'optimizer': 'ada', + } ]) def test_bad_compile(self, n_classes, loss, optimizer): # test compilaton of invalid tf.optimizer and non instantiated loss. @@ -250,7 +254,7 @@ def _cat_dataset(n_samples, input_dim, n_classes, t='train', generator=False): y_stack = [] for i_class in range(n_classes): x_stack.append( - tf.constant(1*i_class, tf.float32, (n_samples, input_dim)) + tf.constant(1*i_class, tf.float32, (n_samples, input_dim)) ) y_stack.append( tf.constant(i_class, tf.float32, (n_samples, n_classes)) @@ -258,7 +262,7 @@ def _cat_dataset(n_samples, input_dim, n_classes, t='train', generator=False): x_set, y_set = tf.stack(x_stack), tf.stack(y_stack) if generator: dataset = tf.data.Dataset.from_tensor_slices( - (x_set, y_set) + (x_set, y_set) ) return dataset return x_set, y_set @@ -281,10 +285,10 @@ def _do_fit(n_samples, clf.compile(optimizer, loss) if generator: x = _cat_dataset( - n_samples, - input_dim, - n_classes, - generator=generator + n_samples, + input_dim, + n_classes, + generator=generator ) y = None # x = x.batch(batch_size) @@ -315,26 +319,26 @@ class FitTests(keras_parameterized.TestCase): # @test_util.run_all_in_graph_and_eager_modes @parameterized.named_parameters([ - {'testcase_name': 'iterator fit', - 'generator': False, - 'reset_n_samples': True, - 'callbacks': None - }, - {'testcase_name': 'iterator fit no samples', - 'generator': False, - 'reset_n_samples': True, - 'callbacks': None - }, - {'testcase_name': 'generator fit', - 'generator': True, - 'reset_n_samples': False, - 'callbacks': None - }, - {'testcase_name': 'with callbacks', - 'generator': True, - 'reset_n_samples': False, - 'callbacks': TestCallback() - }, + {'testcase_name': 'iterator fit', + 'generator': False, + 'reset_n_samples': True, + 'callbacks': None + }, + {'testcase_name': 'iterator fit no samples', + 'generator': False, + 'reset_n_samples': True, + 'callbacks': None + }, + {'testcase_name': 'generator fit', + 'generator': True, + 'reset_n_samples': False, + 'callbacks': None + }, + {'testcase_name': 'with callbacks', + 'generator': True, + 'reset_n_samples': False, + 'callbacks': TestCallback() + }, ]) def test_fit(self, generator, reset_n_samples, callbacks): loss = TestLoss(1, 1, 1) @@ -344,9 +348,19 @@ class FitTests(keras_parameterized.TestCase): epsilon = 1 batch_size = 1 n_samples = 10 - clf = _do_fit(n_samples, input_dim, n_classes, epsilon, generator, batch_size, - reset_n_samples, optimizer, loss, callbacks) - self.assertEqual(hasattr(clf, '_layers'), True) + clf = _do_fit( + n_samples, + input_dim, + n_classes, + epsilon, + generator, + batch_size, + reset_n_samples, + optimizer, + loss, + callbacks + ) + self.assertEqual(hasattr(clf, 'layers'), True) @parameterized.named_parameters([ {'testcase_name': 'generator fit', @@ -368,15 +382,15 @@ class FitTests(keras_parameterized.TestCase): ) clf.compile(optimizer, loss) x = _cat_dataset( - n_samples, - input_dim, - n_classes, - generator=generator + n_samples, + input_dim, + n_classes, + generator=generator ) x = x.batch(batch_size) x = x.shuffle(n_samples // 2) clf.fit_generator(x, n_samples=n_samples) - self.assertEqual(hasattr(clf, '_layers'), True) + self.assertEqual(hasattr(clf, 'layers'), True) @parameterized.named_parameters([ {'testcase_name': 'iterator no n_samples', @@ -399,32 +413,43 @@ class FitTests(keras_parameterized.TestCase): epsilon = 1 batch_size = 1 n_samples = 10 - _do_fit(n_samples, input_dim, n_classes, epsilon, generator, batch_size, - reset_n_samples, optimizer, loss, None, distribution) + _do_fit( + n_samples, + input_dim, + n_classes, + epsilon, + generator, + batch_size, + reset_n_samples, + optimizer, + loss, + None, + distribution + ) @parameterized.named_parameters([ - {'testcase_name': 'None class_weights', - 'class_weights': None, - 'class_counts': None, - 'num_classes': None, - 'result': 1}, - {'testcase_name': 'class weights array', - 'class_weights': [1, 1], - 'class_counts': [1, 1], - 'num_classes': 2, - 'result': [1, 1]}, - {'testcase_name': 'class weights balanced', - 'class_weights': 'balanced', - 'class_counts': [1, 1], - 'num_classes': 2, - 'result': [1, 1]}, + {'testcase_name': 'None class_weights', + 'class_weights': None, + 'class_counts': None, + 'num_classes': None, + 'result': 1}, + {'testcase_name': 'class weights array', + 'class_weights': [1, 1], + 'class_counts': [1, 1], + 'num_classes': 2, + 'result': [1, 1]}, + {'testcase_name': 'class weights balanced', + 'class_weights': 'balanced', + 'class_counts': [1, 1], + 'num_classes': 2, + 'result': [1, 1]}, ]) def test_class_calculate(self, class_weights, class_counts, num_classes, result - ): + ): clf = model.Bolton(1, 1) expected = clf.calculate_class_weights(class_weights, class_counts, @@ -447,14 +472,14 @@ class FitTests(keras_parameterized.TestCase): 'class_weights': 'balanced', 'class_counts': None, 'num_classes': 1, - 'err_msg': - "Class counts must be provided if using class_weights=balanced"}, + 'err_msg': "Class counts must be provided if " + "using class_weights=balanced"}, {'testcase_name': 'no num classes', 'class_weights': 'balanced', 'class_counts': [1], 'num_classes': None, - 'err_msg': - 'num_classes must be provided if using class_weights=balanced'}, + 'err_msg': 'num_classes must be provided if ' + 'using class_weights=balanced'}, {'testcase_name': 'class counts not array', 'class_weights': 'balanced', 'class_counts': 1, @@ -464,7 +489,7 @@ class FitTests(keras_parameterized.TestCase): 'class_weights': [1], 'class_counts': None, 'num_classes': None, - 'err_msg': "You must pass a value for num_classes if" + 'err_msg': "You must pass a value for num_classes if " "creating an array of class_weights"}, {'testcase_name': 'class counts array, improper shape', 'class_weights': [[1], [1]], @@ -481,7 +506,8 @@ class FitTests(keras_parameterized.TestCase): class_weights, class_counts, num_classes, - err_msg): + err_msg + ): clf = model.Bolton(1, 1) with self.assertRaisesRegexp(ValueError, err_msg): expected = clf.calculate_class_weights(class_weights, diff --git a/privacy/bolton/optimizer.py b/privacy/bolton/optimizer.py index 3b836ee..1ec25b9 100644 --- a/privacy/bolton/optimizer.py +++ b/privacy/bolton/optimizer.py @@ -11,7 +11,7 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. -"""Private Optimizer for bolton method""" +"""Bolton Optimizer for bolton method""" from __future__ import absolute_import from __future__ import division @@ -19,15 +19,16 @@ from __future__ import print_function import tensorflow as tf from tensorflow.python.keras.optimizer_v2 import optimizer_v2 +from privacy.bolton.loss import StrongConvexMixin -_private_attributes = ['_internal_optimizer', 'dtype'] +_accepted_distributions = ['laplace'] -class Private(optimizer_v2.OptimizerV2): +class Bolton(optimizer_v2.OptimizerV2): """ - Private optimizer wraps another tf optimizer to be used + Bolton optimizer wraps another tf optimizer to be used as the visible optimizer to the tf model. No matter the optimizer - passed, "Private" enables the bolton model to control the learning rate + passed, "Bolton" enables the bolton model to control the learning rate based on the strongly convex loss. For more details on the strong convexity requirements, see: @@ -36,7 +37,8 @@ class Private(optimizer_v2.OptimizerV2): """ def __init__(self, optimizer: optimizer_v2.OptimizerV2, - dtype=tf.float32 + loss: StrongConvexMixin, + dtype=tf.float32, ): """Constructor. @@ -44,15 +46,100 @@ class Private(optimizer_v2.OptimizerV2): optimizer: Optimizer_v2 or subclass to be used as the optimizer (wrapped). """ + + if not isinstance(loss, StrongConvexMixin): + raise ValueError("loss function must be a Strongly Convex and therfore" + "extend the StrongConvexMixin.") + self._private_attributes = ['_internal_optimizer', + 'dtype', + 'noise_distribution', + 'epsilon', + 'loss', + 'class_weights', + 'input_dim', + 'n_samples', + 'n_classes', + 'layers', + '_model' + ] self._internal_optimizer = optimizer self.dtype = dtype + self.loss = loss def get_config(self): """Reroutes to _internal_optimizer. See super/_internal_optimizer. """ return self._internal_optimizer.get_config() - def limit_learning_rate(self, is_eager, beta, gamma): + def project_weights_to_r(self, force=False): + """helper method to normalize the weights to the R-ball. + + Args: + r: radius of "R-Ball". Scalar to normalize to. + force: True to normalize regardless of previous weight values. + False to check if weights > R-ball and only normalize then. + + Returns: + + """ + r = self.loss.radius() + for layer in self.layers: + if tf.executing_eagerly(): + weight_norm = tf.norm(layer.kernel, axis=0) + if force: + layer.kernel = layer.kernel / (weight_norm / r) + elif tf.reduce_sum(tf.cast(weight_norm > r, dtype=self.dtype)) > 0: + layer.kernel = layer.kernel / (weight_norm / r) + else: + weight_norm = tf.norm(layer.kernel, axis=0) + if force: + layer.kernel = layer.kernel / (weight_norm / r) + else: + layer.kernel = tf.cond( + tf.reduce_sum(tf.cast(weight_norm > r, dtype=self.dtype)) > 0, + lambda: layer.kernel / (weight_norm / r), + lambda: layer.kernel + ) + + def get_noise(self, data_size, input_dim, output_dim, class_weight): + """Sample noise to be added to weights for privacy guarantee + + Args: + distribution: the distribution type to pull noise from + data_size: the number of samples + + Returns: noise in shape of layer's weights to be added to the weights. + + """ + loss = self.loss + distribution = self.noise_distribution.lower() + if distribution == _accepted_distributions[0]: # laplace + per_class_epsilon = self.epsilon / (output_dim) + l2_sensitivity = (2 * + loss.lipchitz_constant(class_weight)) / \ + (loss.gamma() * data_size) + unit_vector = tf.random.normal(shape=(input_dim, output_dim), + mean=0, + seed=1, + stddev=1.0, + dtype=self.dtype) + unit_vector = unit_vector / tf.math.sqrt( + tf.reduce_sum(tf.math.square(unit_vector), axis=0) + ) + + beta = l2_sensitivity / per_class_epsilon + alpha = input_dim # input_dim + gamma = tf.random.gamma([output_dim], + alpha, + beta=1 / beta, + seed=1, + dtype=self.dtype + ) + return unit_vector * gamma + raise NotImplementedError('Noise distribution: {0} is not ' + 'a valid distribution'.format(distribution)) + + def limit_learning_rate(self, beta, gamma): """Implements learning rate limitation that is required by the bolton method for sensitivity bounding of the strongly convex function. Sets the learning rate to the min(1/beta, 1/(gamma*t)) @@ -65,20 +152,13 @@ class Private(optimizer_v2.OptimizerV2): Returns: None """ - numerator = tf.Variable(initial_value=1, dtype=self.dtype) + numerator = tf.constant(1, dtype=self.dtype) t = tf.cast(self._iterations, self.dtype) # will exist on the internal optimizer - pred = numerator / beta < numerator / (gamma * t) - if is_eager: # check eagerly - if pred: - self.learning_rate = numerator / beta - else: - self.learning_rate = numerator / (gamma * t) + if numerator / beta < numerator / (gamma * t): + self.learning_rate = numerator / beta else: - if pred: - self.learning_rate = numerator / beta - else: - self.learning_rate = numerator / (gamma * t) + self.learning_rate = numerator / (gamma * t) def from_config(self, *args, **kwargs): """Reroutes to _internal_optimizer. See super/_internal_optimizer. @@ -92,14 +172,25 @@ class Private(optimizer_v2.OptimizerV2): Args: name: - Returns: attribute from Private if specified to come from self, else + Returns: attribute from Bolton if specified to come from self, else from _internal_optimizer. """ - if name in _private_attributes: + if name == '_private_attributes': + return getattr(self, name) + elif name in self._private_attributes: return getattr(self, name) optim = object.__getattribute__(self, '_internal_optimizer') - return object.__getattribute__(optim, name) + try: + return object.__getattribute__(optim, name) + except AttributeError: + raise AttributeError("Neither '{0}' nor '{1}' object has attribute '{2}'" + "".format( + self.__class__.__name__, + self._internal_optimizer.__class__.__name__, + name + ) + ) def __setattr__(self, key, value): """ Set attribute to self instance if its the internal optimizer. @@ -112,7 +203,9 @@ class Private(optimizer_v2.OptimizerV2): Returns: """ - if key in _private_attributes: + if key == '_private_attributes': + object.__setattr__(self, key, value) + elif key in key in self._private_attributes: object.__setattr__(self, key, value) else: setattr(self._internal_optimizer, key, value) @@ -130,24 +223,135 @@ class Private(optimizer_v2.OptimizerV2): def get_updates(self, loss, params): """Reroutes to _internal_optimizer. See super/_internal_optimizer. """ - return self._internal_optimizer.get_updates(loss, params) + # self.layers = params + out = self._internal_optimizer.get_updates(loss, params) + self.limit_learning_rate(self.loss.beta(self.class_weights), + self.loss.gamma() + ) + self.project_weights_to_r() + return out def apply_gradients(self, *args, **kwargs): """Reroutes to _internal_optimizer. See super/_internal_optimizer. """ - return self._internal_optimizer.apply_gradients(*args, **kwargs) + # grads_and_vars = kwargs.get('grads_and_vars', None) + # grads_and_vars = optimizer_v2._filter_grads(grads_and_vars) + # var_list = [v for (_, v) in grads_and_vars] + # self.layers = var_list + out = self._internal_optimizer.apply_gradients(*args, **kwargs) + self.limit_learning_rate(self.loss.beta(self.class_weights), + self.loss.gamma() + ) + self.project_weights_to_r() + return out def minimize(self, *args, **kwargs): """Reroutes to _internal_optimizer. See super/_internal_optimizer. """ - return self._internal_optimizer.minimize(*args, **kwargs) + # self.layers = kwargs.get('var_list', None) + out = self._internal_optimizer.minimize(*args, **kwargs) + self.limit_learning_rate(self.loss.beta(self.class_weights), + self.loss.gamma() + ) + self.project_weights_to_r() + return out def _compute_gradients(self, *args, **kwargs): """Reroutes to _internal_optimizer. See super/_internal_optimizer. """ + # self.layers = kwargs.get('var_list', None) return self._internal_optimizer._compute_gradients(*args, **kwargs) def get_gradients(self, *args, **kwargs): """Reroutes to _internal_optimizer. See super/_internal_optimizer. """ + # self.layers = kwargs.get('params', None) return self._internal_optimizer.get_gradients(*args, **kwargs) + + def __enter__(self): + noise_distribution = self.noise_distribution + epsilon = self.epsilon + class_weights = self.class_weights + n_samples = self.n_samples + if noise_distribution not in _accepted_distributions: + raise ValueError('Detected noise distribution: {0} not one of: {1} valid' + 'distributions'.format(noise_distribution, + _accepted_distributions)) + self.noise_distribution = noise_distribution + self.epsilon = epsilon + self.class_weights = class_weights + self.n_samples = n_samples + return self + + def __call__(self, + noise_distribution, + epsilon, + layers, + class_weights, + n_samples, + n_classes, + ): + """ + + Args: + noise_distribution: the noise distribution to pick. + see _accepted_distributions and get_noise for + possible values. + epsilon: privacy parameter. Lower gives more privacy but less utility. + class_weights: class_weights used + n_samples number of rows/individual samples in the training set + n_classes: number of output classes + layers: list of Keras/Tensorflow layers. + """ + if epsilon <= 0: + raise ValueError('Detected epsilon: {0}. ' + 'Valid range is 0 < epsilon