diff --git a/tensorflow_privacy/privacy/fast_gradient_clipping/gradient_clipping_utils.py b/tensorflow_privacy/privacy/fast_gradient_clipping/gradient_clipping_utils.py index 23de260..64046e7 100644 --- a/tensorflow_privacy/privacy/fast_gradient_clipping/gradient_clipping_utils.py +++ b/tensorflow_privacy/privacy/fast_gradient_clipping/gradient_clipping_utils.py @@ -13,7 +13,7 @@ # limitations under the License. """Utility functions that help in the computation of per-example gradient norms.""" -from typing import Any, Callable, Dict, Iterable, List, Optional, Text, Tuple, Union +from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Text, Tuple, Union from absl import logging import tensorflow as tf @@ -36,19 +36,6 @@ def has_internal_compute_graph(input_object: Any): ) -def _get_internal_layers( - input_layer: tf.keras.layers.Layer, -) -> List[tf.keras.layers.Layer]: - """Returns a list of layers that are nested within a given layer.""" - internal_layers = [] - if isinstance(input_layer, tf.keras.Model) and hasattr(input_layer, 'layers'): - for layer in input_layer.layers: - internal_layers.extend(_get_internal_layers(layer)) - else: - internal_layers.append(input_layer) - return internal_layers - - def model_forward_pass( input_model: tf.keras.Model, inputs: PackedTensors, @@ -114,18 +101,10 @@ def model_forward_pass( generator_outputs_list.extend(node_generator_outputs) else: # Otherwise, we parse the node directly. - node_layers = _get_internal_layers(node.layer) - for layer in node_layers: - node_layer_outputs, layer_generator_outputs = generator_fn( - layer, args, kwargs - ) - generator_outputs_list.append(layer_generator_outputs) - args = ( - node_layer_outputs - if isinstance(node_layer_outputs, tuple) - else (node_layer_outputs,) - ) - kwargs = {} + node_layer_outputs, layer_generator_outputs = generator_fn( + node.layer, args, kwargs + ) + generator_outputs_list.append(layer_generator_outputs) # Update the current dictionary of inputs for the next node. for x_id, y in zip( @@ -163,9 +142,8 @@ def all_trainable_layers_are_registered( False otherwise. """ for layer in input_model.layers: - for sublayer in _get_internal_layers(layer): - if not layer_registry.is_elem(sublayer) and sublayer.trainable_variables: - return False + if not layer_registry.is_elem(layer) and layer.trainable_variables: + return False return True @@ -213,17 +191,53 @@ def add_aggregate_noise( def generate_model_outputs_using_core_keras_layers( input_model: tf.keras.Model, + custom_layer_set: Optional[Set[type]] = None, # pylint: disable=g-bare-generic ) -> PackedTensors: - """Returns the model outputs generated by only core Keras layers.""" - cust_obj_dict = dict.copy(tf.keras.utils.get_custom_objects()) - cust_hash_set = set([hash(v) for v in cust_obj_dict.values()]) + """Returns the model outputs generated by only core Keras layers. + + Args: + input_model: A `tf.keras.Model` instance to obtain outputs from. + custom_layer_set: An optional `set` of custom layers to expand. If `None`, + then this is the set of all registered custom Keras layers. + + Returns: + A `tf.Tensor` that is the result of `input_model(input_model.inputs)` + using only Keras layers that are not in `custom_layer_set`. + """ + # Set up helper variables and functions. + custom_layer_set = ( + custom_layer_set or tf.keras.utils.get_custom_objects().values() + ) + + def _is_core(layer_instance): + return type(layer_instance) not in custom_layer_set def generator_fn(layer_instance, args, kwargs): - if hash(layer_instance.__class__) in cust_hash_set: - # Using `.call()` does not register the layer in the compute graph of - # a forward pass. - return layer_instance.call(*args, **kwargs), None - else: - return layer_instance(*args, **kwargs), None + # Using `.call()` does not register the layer in the compute graph of + # a forward pass. + layer_outputs = ( + layer_instance(*args, **kwargs) + if _is_core(layer_instance) + else layer_instance.call(*args, **kwargs) + ) + return layer_outputs, None - return model_forward_pass(input_model, input_model.inputs, generator_fn)[0] + # Return early if all the existing layers contain only core layers. + if all(_is_core(layer) for layer in input_model.layers): + return model_forward_pass(input_model, input_model.inputs)[0] + + # Do a forward pass to expand the outermost layers. + candidate_outputs, _ = model_forward_pass( + input_model, input_model.inputs, generator_fn + ) + + # The following recursion is inefficient because it recursively builds `n` + # Keras model graphs, where `n` is the number of recursive calls. However, + # it appears to be the only valid approach without accessing Keras's internal + # functions (e.g., `keras.engine.functional._map_graph_network()`). + cleaned_model = tf.keras.Model( + inputs=input_model.inputs, outputs=candidate_outputs + ) + return generate_model_outputs_using_core_keras_layers( + cleaned_model, custom_layer_set + ) diff --git a/tensorflow_privacy/privacy/fast_gradient_clipping/gradient_clipping_utils_test.py b/tensorflow_privacy/privacy/fast_gradient_clipping/gradient_clipping_utils_test.py index f3c84b4..68b61ef 100644 --- a/tensorflow_privacy/privacy/fast_gradient_clipping/gradient_clipping_utils_test.py +++ b/tensorflow_privacy/privacy/fast_gradient_clipping/gradient_clipping_utils_test.py @@ -12,12 +12,72 @@ # See the License for the specific language governing permissions and # limitations under the License. +from typing import Any + from absl.testing import parameterized import tensorflow as tf from tensorflow_privacy.privacy.fast_gradient_clipping import gradient_clipping_utils +# ============================================================================== +# Helper functions and classes. +# ============================================================================== +@tf.keras.utils.register_keras_serializable('gradient_clipping_utils_test') +class DoubleDense(tf.keras.layers.Layer): + """Generates two dense layers nested together.""" + + def __init__(self, units: int): + super().__init__() + self.dense1 = tf.keras.layers.Dense(units, name='DDense_ext_1') + self.dense2 = tf.keras.layers.Dense(1, name='DDense_ext_2') + + def call(self, inputs: Any): + x = self.dense1(inputs) + return self.dense2(x) + + +@tf.keras.utils.register_keras_serializable('gradient_clipping_utils_test') +class TripleDense(tf.keras.layers.Layer): + """Generates three dense layers nested together.""" + + def __init__(self, units: int): + super().__init__() + self.dense1 = tf.keras.layers.Dense(units, name='TDense_ext_1') + self.dense2 = tf.keras.layers.Dense(units, name='TDense_ext_2') + self.dense3 = tf.keras.layers.Dense(1, name='TDense_ext_3') + + def call(self, inputs: Any): + x1 = self.dense1(inputs) + x2 = self.dense2(x1) + return self.dense3(x2) + + +def get_reduced_model(sample_inputs, hidden_layer_list, new_custom_layers=None): + """Reduces a set of layers to only core Keras layers in a model.""" + sample_outputs = sample_inputs + for l in hidden_layer_list: + sample_outputs = l(sample_outputs) + custom_model = tf.keras.Model(inputs=sample_inputs, outputs=sample_outputs) + if new_custom_layers: + reduced_outputs = ( + gradient_clipping_utils.generate_model_outputs_using_core_keras_layers( + custom_model, + custom_layer_set=new_custom_layers, + ) + ) + else: + reduced_outputs = ( + gradient_clipping_utils.generate_model_outputs_using_core_keras_layers( + custom_model + ) + ) + return tf.keras.Model(inputs=custom_model.inputs, outputs=reduced_outputs) + + +# ============================================================================== +# Main tests. +# ============================================================================== class ModelForwardPassTest(tf.test.TestCase, parameterized.TestCase): @parameterized.product( @@ -75,5 +135,46 @@ class ModelForwardPassTest(tf.test.TestCase, parameterized.TestCase): self.assertAllClose(computed_outputs, true_outputs) +class GenerateOutputsUsingCoreKerasLayers( + tf.test.TestCase, parameterized.TestCase +): + + def test_single_custom_layer_is_reduced(self): + num_units = 5 + num_dims = 3 + reduced_model = get_reduced_model( + tf.keras.Input(num_dims), + [DoubleDense(num_units)], + ) + # Ignore the input layer. + for l in reduced_model.layers[1:]: + self.assertIsInstance(l, tf.keras.layers.Dense) + + def test_two_distinct_custom_layers_are_reduced(self): + num_units = 5 + num_dims = 3 + reduced_model = get_reduced_model( + tf.keras.Input(num_dims), + [DoubleDense(num_units), TripleDense(num_units)], + ) + # Ignore the input layer. + for l in reduced_model.layers[1:]: + self.assertIsInstance(l, tf.keras.layers.Dense) + + def test_new_custom_layer_spec(self): + num_units = 5 + num_dims = 3 + reduced_model = get_reduced_model( + tf.keras.Input(num_dims), + [DoubleDense(num_units), TripleDense(num_units)], + new_custom_layers=set([DoubleDense]), + ) + # Ignore the input layer. + for l in reduced_model.layers[1:]: + self.assertTrue( + isinstance(l, tf.keras.layers.Dense) or isinstance(l, TripleDense) + ) + + if __name__ == '__main__': tf.test.main()