forked from 626_privacy/tensorflow_privacy
more lint
This commit is contained in:
parent
33c3f058ac
commit
f06443d50e
1 changed files with 41 additions and 29 deletions
|
@ -11,7 +11,7 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Bolton Optimizer for bolton method"""
|
||||
"""Bolton Optimizer for bolton method."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
|
@ -28,8 +28,10 @@ _accepted_distributions = ['laplace'] # implemented distributions for noising
|
|||
class GammaBetaDecreasingStep(
|
||||
optimizer_v2.learning_rate_schedule.LearningRateSchedule):
|
||||
"""Computes LR as minimum of 1/beta and 1/(gamma * step) at each step.
|
||||
A required step for privacy guarantees.
|
||||
|
||||
This is a required step for privacy guarantees.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.is_init = False
|
||||
self.beta = None
|
||||
|
@ -37,11 +39,13 @@ class GammaBetaDecreasingStep(
|
|||
|
||||
def __call__(self, step):
|
||||
"""Computes and returns the learning rate.
|
||||
Args:
|
||||
step: the current iteration number
|
||||
Returns:
|
||||
decayed learning rate to minimum of 1/beta and 1/(gamma * step) as per
|
||||
the Bolton privacy requirements.
|
||||
|
||||
Args:
|
||||
step: the current iteration number
|
||||
|
||||
Returns:
|
||||
decayed learning rate to minimum of 1/beta and 1/(gamma * step) as per
|
||||
the Bolton privacy requirements.
|
||||
"""
|
||||
if not self.is_init:
|
||||
raise AttributeError('Please initialize the {0} Learning Rate Scheduler.'
|
||||
|
@ -49,13 +53,13 @@ class GammaBetaDecreasingStep(
|
|||
'{1} as a context manager, '
|
||||
'as desired'.format(self.__class__.__name__,
|
||||
Bolton.__class__.__name__
|
||||
)
|
||||
)
|
||||
)
|
||||
)
|
||||
dtype = self.beta.dtype
|
||||
one = tf.constant(1, dtype)
|
||||
return tf.math.minimum(tf.math.reduce_min(one/self.beta),
|
||||
one/(self.gamma*math_ops.cast(step, dtype))
|
||||
)
|
||||
)
|
||||
|
||||
def get_config(self):
|
||||
"""Return config to setup the learning rate scheduler."""
|
||||
|
@ -107,22 +111,24 @@ class Bolton(optimizer_v2.OptimizerV2):
|
|||
Bolt-on Differential Privacy for Scalable Stochastic Gradient
|
||||
Descent-based Analytics by Xi Wu et. al.
|
||||
"""
|
||||
|
||||
def __init__(self, # pylint: disable=super-init-not-called
|
||||
optimizer,
|
||||
loss,
|
||||
dtype=tf.float32,
|
||||
):
|
||||
):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
optimizer: Optimizer_v2 or subclass to be used as the optimizer
|
||||
(wrapped).
|
||||
loss: StrongConvexLoss function that the model is being compiled with.
|
||||
Args:
|
||||
optimizer: Optimizer_v2 or subclass to be used as the optimizer
|
||||
(wrapped).
|
||||
loss: StrongConvexLoss function that the model is being compiled with.
|
||||
dtype: dtype
|
||||
"""
|
||||
|
||||
if not isinstance(loss, StrongConvexMixin):
|
||||
raise ValueError("loss function must be a Strongly Convex and therefore "
|
||||
"extend the StrongConvexMixin.")
|
||||
raise ValueError('loss function must be a Strongly Convex and therefore '
|
||||
'extend the StrongConvexMixin.')
|
||||
self._private_attributes = ['_internal_optimizer',
|
||||
'dtype',
|
||||
'noise_distribution',
|
||||
|
@ -134,7 +140,7 @@ class Bolton(optimizer_v2.OptimizerV2):
|
|||
'layers',
|
||||
'batch_size',
|
||||
'_is_init'
|
||||
]
|
||||
]
|
||||
self._internal_optimizer = optimizer
|
||||
self.learning_rate = GammaBetaDecreasingStep() # use the Bolton Learning
|
||||
# rate scheduler, as required for privacy guarantees. This will still need
|
||||
|
@ -154,6 +160,9 @@ class Bolton(optimizer_v2.OptimizerV2):
|
|||
Args:
|
||||
force: True to normalize regardless of previous weight values.
|
||||
False to check if weights > R-ball and only normalize then.
|
||||
|
||||
Raises:
|
||||
Exception:
|
||||
"""
|
||||
if not self._is_init:
|
||||
raise Exception('This method must be called from within the optimizer\'s '
|
||||
|
@ -171,14 +180,17 @@ class Bolton(optimizer_v2.OptimizerV2):
|
|||
)
|
||||
|
||||
def get_noise(self, input_dim, output_dim):
|
||||
"""Sample noise to be added to weights for privacy guarantee
|
||||
"""Sample noise to be added to weights for privacy guarantee.
|
||||
|
||||
Args:
|
||||
input_dim: the input dimensionality for the weights
|
||||
output_dim the output dimensionality for the weights
|
||||
Args:
|
||||
input_dim: the input dimensionality for the weights
|
||||
output_dim the output dimensionality for the weights
|
||||
|
||||
Returns:
|
||||
Noise in shape of layer's weights to be added to the weights.
|
||||
Returns:
|
||||
Noise in shape of layer's weights to be added to the weights.
|
||||
|
||||
Raises:
|
||||
Exception:
|
||||
"""
|
||||
if not self._is_init:
|
||||
raise Exception('This method must be called from within the optimizer\'s '
|
||||
|
@ -206,7 +218,7 @@ class Bolton(optimizer_v2.OptimizerV2):
|
|||
beta=1 / beta,
|
||||
seed=1,
|
||||
dtype=self.dtype
|
||||
)
|
||||
)
|
||||
return unit_vector * gamma
|
||||
raise NotImplementedError('Noise distribution: {0} is not '
|
||||
'a valid distribution'.format(distribution))
|
||||
|
@ -236,7 +248,7 @@ class Bolton(optimizer_v2.OptimizerV2):
|
|||
"".format(self.__class__.__name__,
|
||||
self._internal_optimizer.__class__.__name__,
|
||||
name
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
def __setattr__(self, key, value):
|
||||
|
@ -304,7 +316,7 @@ class Bolton(optimizer_v2.OptimizerV2):
|
|||
class_weights,
|
||||
n_samples,
|
||||
batch_size
|
||||
):
|
||||
):
|
||||
"""Accepts required values for bolton method from context entry point.
|
||||
Stores them on the optimizer for use throughout fitting.
|
||||
|
||||
|
@ -328,7 +340,7 @@ class Bolton(optimizer_v2.OptimizerV2):
|
|||
self.noise_distribution = noise_distribution
|
||||
self.learning_rate.initialize(self.loss.beta(class_weights),
|
||||
self.loss.gamma()
|
||||
)
|
||||
)
|
||||
self.epsilon = tf.constant(epsilon, dtype=self.dtype)
|
||||
self.class_weights = tf.constant(class_weights, dtype=self.dtype)
|
||||
self.n_samples = tf.constant(n_samples, dtype=self.dtype)
|
||||
|
@ -354,7 +366,7 @@ class Bolton(optimizer_v2.OptimizerV2):
|
|||
output_dim = layer.units
|
||||
noise = self.get_noise(input_dim,
|
||||
output_dim,
|
||||
)
|
||||
)
|
||||
layer.kernel = tf.math.add(layer.kernel, noise)
|
||||
self.noise_distribution = None
|
||||
self.learning_rate.de_initialize()
|
||||
|
|
Loading…
Reference in a new issue