Minor update to mnist_lr_tutorial.py to avoid (some) deprecated items.

PiperOrigin-RevId: 339327388
This commit is contained in:
Steve Chien 2020-10-27 14:15:49 -07:00 committed by A. Unique TensorFlower
parent 67f7f35383
commit f0daaf085f

View file

@ -30,8 +30,6 @@ import math
from absl import app
from absl import flags
from distutils.version import LooseVersion
import numpy as np
import tensorflow.compat.v1 as tf
@ -39,10 +37,7 @@ from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
from tensorflow_privacy.privacy.optimizers import dp_optimizer
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
GradientDescentOptimizer = tf.train.GradientDescentOptimizer
else:
GradientDescentOptimizer = tf.optimizers.SGD # pylint: disable=invalid-name
FLAGS = flags.FLAGS
@ -62,14 +57,11 @@ flags.DEFINE_float('data_l2_norm', 8, 'Bound on the L2 norm of normalized data')
def lr_model_fn(features, labels, mode, nclasses, dim):
"""Model function for logistic regression."""
input_layer = tf.reshape(features['x'], tuple([-1]) + dim)
logits = tf.layers.dense(
inputs=input_layer,
logits = tf.keras.layers.Dense(
units=nclasses,
kernel_regularizer=tf.contrib.layers.l2_regularizer(
scale=FLAGS.regularizer),
bias_regularizer=tf.contrib.layers.l2_regularizer(
scale=FLAGS.regularizer))
kernel_regularizer=tf.keras.regularizers.L2(l2=FLAGS.regularizer),
bias_regularizer=tf.keras.regularizers.L2(l2=FLAGS.regularizer)).apply(
input_layer)
# Calculate loss as a vector (to support microbatches in DP-SGD).
vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(