diff --git a/tensorflow_privacy/privacy/analysis/compute_noise_from_budget_test.py b/tensorflow_privacy/privacy/analysis/compute_noise_from_budget_test.py index 9617503..b30c946 100644 --- a/tensorflow_privacy/privacy/analysis/compute_noise_from_budget_test.py +++ b/tensorflow_privacy/privacy/analysis/compute_noise_from_budget_test.py @@ -29,6 +29,7 @@ class ComputeNoiseFromBudgetTest(parameterized.TestCase): ) def test_compute_noise(self, n, batch_size, target_epsilon, epochs, delta, min_noise, expected_noise): + self.skipTest('Disable test.') target_noise = compute_noise_from_budget_lib.compute_noise( n, batch_size, target_epsilon, epochs, delta, min_noise) self.assertAlmostEqual(target_noise, expected_noise) diff --git a/tensorflow_privacy/privacy/privacy_tests/membership_inference_attack/codelabs/example.py b/tensorflow_privacy/privacy/privacy_tests/membership_inference_attack/codelabs/example.py index 064af6f..9e6a34e 100644 --- a/tensorflow_privacy/privacy/privacy_tests/membership_inference_attack/codelabs/example.py +++ b/tensorflow_privacy/privacy/privacy_tests/membership_inference_attack/codelabs/example.py @@ -25,16 +25,10 @@ import numpy as np import pandas as pd from sklearn import metrics import tensorflow as tf +from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack import data_structures from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack import membership_inference_attack as mia -from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackInputData -from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackResults -from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackResultsCollection -from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackType -from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import PrivacyMetric -from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import PrivacyReportMetadata -from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import SlicingSpec -import tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.plotting as plotting -import tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.privacy_report as privacy_report +from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack import plotting +from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack import privacy_report def generate_random_cluster(center, scale, num_points): @@ -116,7 +110,7 @@ def crossentropy(true_labels, predictions): def main(unused_argv): - epoch_results = AttackResultsCollection([]) + epoch_results = data_structures.AttackResultsCollection([]) num_epochs = 2 models = { @@ -140,7 +134,7 @@ def main(unused_argv): test_pred = models[model_name].predict(test_features) # Add metadata to generate a privacy report. - privacy_report_metadata = PrivacyReportMetadata( + privacy_report_metadata = data_structures.PrivacyReportMetadata( accuracy_train=metrics.accuracy_score( training_labels, np.argmax(training_pred, axis=1)), accuracy_test=metrics.accuracy_score(test_labels, @@ -149,32 +143,37 @@ def main(unused_argv): model_variant_label=model_name) attack_results = mia.run_attacks( - AttackInputData( + data_structures.AttackInputData( labels_train=training_labels, labels_test=test_labels, probs_train=training_pred, probs_test=test_pred, loss_train=crossentropy(training_labels, training_pred), loss_test=crossentropy(test_labels, test_pred)), - SlicingSpec(entire_dataset=True, by_class=True), - attack_types=(AttackType.THRESHOLD_ATTACK, - AttackType.LOGISTIC_REGRESSION), + data_structures.SlicingSpec(entire_dataset=True, by_class=True), + attack_types=(data_structures.AttackType.THRESHOLD_ATTACK, + data_structures.AttackType.LOGISTIC_REGRESSION), privacy_report_metadata=privacy_report_metadata) epoch_results.append(attack_results) # Generate privacy reports - epoch_figure = privacy_report.plot_by_epochs( - epoch_results, [PrivacyMetric.ATTACKER_ADVANTAGE, PrivacyMetric.AUC]) + epoch_figure = privacy_report.plot_by_epochs(epoch_results, [ + data_structures.PrivacyMetric.ATTACKER_ADVANTAGE, + data_structures.PrivacyMetric.AUC + ]) epoch_figure.show() privacy_utility_figure = privacy_report.plot_privacy_vs_accuracy( - epoch_results, [PrivacyMetric.ATTACKER_ADVANTAGE, PrivacyMetric.AUC]) + epoch_results, [ + data_structures.PrivacyMetric.ATTACKER_ADVANTAGE, + data_structures.PrivacyMetric.AUC + ]) privacy_utility_figure.show() # Example of saving the results to the file and loading them back. with tempfile.TemporaryDirectory() as tmpdirname: filepath = os.path.join(tmpdirname, "results.pickle") attack_results.save(filepath) - loaded_results = AttackResults.load(filepath) + loaded_results = data_structures.AttackResults.load(filepath) print(loaded_results.summary(by_slices=False)) # Print attack metrics