forked from 626_privacy/tensorflow_privacy
update API calls for TF2
PiperOrigin-RevId: 245817981
This commit is contained in:
parent
ab466b156c
commit
febafd830d
4 changed files with 43 additions and 24 deletions
|
@ -46,8 +46,8 @@ class GaussianSumQuery(dp_query.DPQuery):
|
|||
stddev: The stddev of the noise added to the sum.
|
||||
ledger: The privacy ledger to which queries should be recorded.
|
||||
"""
|
||||
self._l2_norm_clip = tf.to_float(l2_norm_clip)
|
||||
self._stddev = tf.to_float(stddev)
|
||||
self._l2_norm_clip = tf.cast(l2_norm_clip, tf.float32)
|
||||
self._stddev = tf.cast(stddev, tf.float32)
|
||||
self._ledger = ledger
|
||||
|
||||
def initial_global_state(self):
|
||||
|
@ -127,8 +127,13 @@ class GaussianSumQuery(dp_query.DPQuery):
|
|||
A tuple (estimate, new_global_state) where "estimate" is the estimated
|
||||
sum of the records and "new_global_state" is the updated global state.
|
||||
"""
|
||||
def add_noise(v):
|
||||
return v + tf.random_normal(tf.shape(v), stddev=self._stddev)
|
||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||
def add_noise(v):
|
||||
return v + tf.random_normal(tf.shape(v), stddev=self._stddev)
|
||||
else:
|
||||
random_normal = tf.random_normal_initializer(stddev=self._stddev)
|
||||
def add_noise(v):
|
||||
return v + random_normal(tf.shape(v))
|
||||
|
||||
return nest.map_structure(add_noise, sample_state), global_state
|
||||
|
||||
|
@ -162,4 +167,4 @@ class GaussianAverageQuery(normalized_query.NormalizedQuery):
|
|||
"""
|
||||
super(GaussianAverageQuery, self).__init__(
|
||||
numerator_query=GaussianSumQuery(l2_norm_clip, sum_stddev, ledger),
|
||||
denominator=tf.to_float(denominator))
|
||||
denominator=tf.cast(denominator, tf.float32))
|
||||
|
|
|
@ -19,11 +19,15 @@ from __future__ import absolute_import
|
|||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from distutils.version import LooseVersion
|
||||
import tensorflow as tf
|
||||
|
||||
from privacy.dp_query import dp_query
|
||||
|
||||
nest = tf.contrib.framework.nest
|
||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||
nest = tf.contrib.framework.nest
|
||||
else:
|
||||
nest = tf.nest
|
||||
|
||||
|
||||
class NormalizedQuery(dp_query.DPQuery):
|
||||
|
@ -37,7 +41,7 @@ class NormalizedQuery(dp_query.DPQuery):
|
|||
denominator: A value for the denominator.
|
||||
"""
|
||||
self._numerator = numerator_query
|
||||
self._denominator = tf.to_float(denominator)
|
||||
self._denominator = tf.cast(denominator, tf.float32)
|
||||
|
||||
def initial_global_state(self):
|
||||
"""Returns the initial global state for the NormalizedQuery."""
|
||||
|
|
|
@ -17,6 +17,7 @@ from __future__ import absolute_import
|
|||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from distutils.version import LooseVersion
|
||||
import tensorflow as tf
|
||||
|
||||
from privacy.analysis import privacy_ledger
|
||||
|
@ -25,8 +26,15 @@ from privacy.dp_query import gaussian_query
|
|||
|
||||
def make_optimizer_class(cls):
|
||||
"""Constructs a DP optimizer class from an existing one."""
|
||||
if (tf.train.Optimizer.compute_gradients.__code__ is
|
||||
not cls.compute_gradients.__code__):
|
||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||
parent_code = tf.train.Optimizer.compute_gradients.__code__
|
||||
child_code = cls.compute_gradients.__code__
|
||||
GATE_OP = tf.train.Optimizer.GATE_OP # pylint: disable=invalid-name
|
||||
else:
|
||||
parent_code = tf.optimizers.Optimizer.compute_gradients.__code__
|
||||
child_code = cls._compute_gradients.__code__ # pylint: disable=protected-access
|
||||
GATE_OP = None # pylint: disable=invalid-name
|
||||
if child_code is not parent_code:
|
||||
tf.logging.warning(
|
||||
'WARNING: Calling make_optimizer_class() on class %s that overrides '
|
||||
'method compute_gradients(). Check to ensure that '
|
||||
|
@ -55,7 +63,7 @@ def make_optimizer_class(cls):
|
|||
def compute_gradients(self,
|
||||
loss,
|
||||
var_list,
|
||||
gate_gradients=tf.train.Optimizer.GATE_OP,
|
||||
gate_gradients=GATE_OP,
|
||||
aggregation_method=None,
|
||||
colocate_gradients_with_ops=False,
|
||||
grad_loss=None,
|
||||
|
|
|
@ -16,6 +16,8 @@ from __future__ import absolute_import
|
|||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from absl import app
|
||||
from absl import flags
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
|
@ -32,18 +34,18 @@ except: # pylint: disable=bare-except
|
|||
|
||||
tf.enable_eager_execution()
|
||||
|
||||
tf.flags.DEFINE_boolean('dpsgd', True, 'If True, train with DP-SGD. If False, '
|
||||
'train with vanilla SGD.')
|
||||
tf.flags.DEFINE_float('learning_rate', 0.15, 'Learning rate for training')
|
||||
tf.flags.DEFINE_float('noise_multiplier', 1.1,
|
||||
'Ratio of the standard deviation to the clipping norm')
|
||||
tf.flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm')
|
||||
tf.flags.DEFINE_integer('batch_size', 250, 'Batch size')
|
||||
tf.flags.DEFINE_integer('epochs', 60, 'Number of epochs')
|
||||
tf.flags.DEFINE_integer('microbatches', 250, 'Number of microbatches '
|
||||
'(must evenly divide batch_size)')
|
||||
flags.DEFINE_boolean('dpsgd', True, 'If True, train with DP-SGD. If False, '
|
||||
'train with vanilla SGD.')
|
||||
flags.DEFINE_float('learning_rate', 0.15, 'Learning rate for training')
|
||||
flags.DEFINE_float('noise_multiplier', 1.1,
|
||||
'Ratio of the standard deviation to the clipping norm')
|
||||
flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm')
|
||||
flags.DEFINE_integer('batch_size', 250, 'Batch size')
|
||||
flags.DEFINE_integer('epochs', 60, 'Number of epochs')
|
||||
flags.DEFINE_integer('microbatches', 250, 'Number of microbatches '
|
||||
'(must evenly divide batch_size)')
|
||||
|
||||
FLAGS = tf.app.flags.FLAGS
|
||||
FLAGS = flags.FLAGS
|
||||
|
||||
|
||||
def compute_epsilon(steps):
|
||||
|
@ -118,8 +120,8 @@ def main(_):
|
|||
# In Eager mode, the optimizer takes a function that returns the loss.
|
||||
def loss_fn():
|
||||
logits = mnist_model(images, training=True) # pylint: disable=undefined-loop-variable,cell-var-from-loop
|
||||
loss = tf.losses.sparse_softmax_cross_entropy(
|
||||
labels, logits, reduction=tf.losses.Reduction.NONE) # pylint: disable=undefined-loop-variable,cell-var-from-loop
|
||||
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
|
||||
labels=labels, logits=logits) # pylint: disable=undefined-loop-variable,cell-var-from-loop
|
||||
# If training without privacy, the loss is a scalar not a vector.
|
||||
if not FLAGS.dpsgd:
|
||||
loss = tf.reduce_mean(loss)
|
||||
|
@ -149,4 +151,4 @@ def main(_):
|
|||
print('Trained with vanilla non-private SGD optimizer')
|
||||
|
||||
if __name__ == '__main__':
|
||||
tf.app.run(main)
|
||||
app.run(main)
|
||||
|
|
Loading…
Reference in a new issue