# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A lightweight buffer for maintaining tensors.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf class TensorBuffer(object): """A lightweight buffer for maintaining lists. The TensorBuffer accumulates tensors of the given shape into a tensor (whose rank is one more than that of the given shape) via calls to `append`. The current value of the accumulated tensor can be extracted via the property `values`. """ def __init__(self, capacity, shape, dtype=tf.int32, name=None): """Initializes the TensorBuffer. Args: capacity: Initial capacity. Buffer will double in capacity each time it is filled to capacity. shape: The shape (as tuple or list) of the tensors to accumulate. dtype: The type of the tensors. name: A string name for the variable_scope used. Raises: ValueError: If the shape is empty (specifies scalar shape). """ shape = list(shape) self._rank = len(shape) self._name = name self._dtype = dtype if not self._rank: raise ValueError('Shape cannot be scalar.') shape = [capacity] + shape with tf.variable_scope(self._name): # We need to use a placeholder as the initial value to allow resizing. self._buffer = tf.Variable( initial_value=tf.placeholder_with_default( tf.zeros(shape, dtype), shape=None), trainable=False, name='buffer', use_resource=True) self._current_size = tf.Variable( initial_value=0, trainable=False, name='current_size') self._capacity = tf.Variable( initial_value=capacity, trainable=False, name='capacity') def append(self, value): """Appends a new tensor to the end of the buffer. Args: value: The tensor to append. Must match the shape specified in the initializer. Returns: An op appending the new tensor to the end of the buffer. """ def _double_capacity(): """Doubles the capacity of the current tensor buffer.""" padding = tf.zeros_like(self._buffer, self._buffer.dtype) new_buffer = tf.concat([self._buffer, padding], axis=0) if tf.executing_eagerly(): with tf.variable_scope(self._name, reuse=True): self._buffer = tf.get_variable( name='buffer', dtype=self._dtype, initializer=new_buffer, trainable=False) return self._buffer, tf.assign(self._capacity, tf.multiply(self._capacity, 2)) else: return tf.assign( self._buffer, new_buffer, validate_shape=False), tf.assign(self._capacity, tf.multiply(self._capacity, 2)) update_buffer, update_capacity = tf.cond( tf.equal(self._current_size, self._capacity), _double_capacity, lambda: (self._buffer, self._capacity)) with tf.control_dependencies([update_buffer, update_capacity]): with tf.control_dependencies([ tf.assert_less( self._current_size, self._capacity, message='Appending past end of TensorBuffer.'), tf.assert_equal( tf.shape(value), tf.shape(self._buffer)[1:], message='Appending value of inconsistent shape.') ]): with tf.control_dependencies( [tf.assign(self._buffer[self._current_size, :], value)]): return tf.assign_add(self._current_size, 1) @property def values(self): """Returns the accumulated tensor.""" begin_value = tf.zeros([self._rank + 1], dtype=tf.int32) value_size = tf.concat([[self._current_size], tf.constant(-1, tf.int32, [self._rank])], 0) return tf.slice(self._buffer, begin_value, value_size) @property def current_size(self): """Returns the current number of tensors in the buffer.""" return self._current_size @property def capacity(self): """Returns the current capacity of the buffer.""" return self._capacity