# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Command-line script for computing privacy of a model trained with DP-SGD. The script applies the RDP accountant to estimate privacy budget of an iterated Sampled Gaussian Mechanism. The mechanism's parameters are controlled by flags. Example: compute_dp_sgd_privacy --N=60000 \ --batch_size=256 \ --noise_multiplier=1.12 \ --epochs=60 \ --delta=1e-5 The output states that DP-SGD with these parameters satisfies (2.92, 1e-5)-DP. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math from absl import app from absl import flags from privacy.analysis.rdp_accountant import compute_rdp from privacy.analysis.rdp_accountant import get_privacy_spent FLAGS = flags.FLAGS flags.DEFINE_integer('N', None, 'Total number of examples') flags.DEFINE_integer('batch_size', None, 'Batch size') flags.DEFINE_float('noise_multiplier', None, 'Noise multiplier for DP-SGD') flags.DEFINE_float('epochs', None, 'Number of epochs (may be fractional)') flags.DEFINE_float('delta', 1e-6, 'Target delta') flags.mark_flag_as_required('N') flags.mark_flag_as_required('batch_size') flags.mark_flag_as_required('noise_multiplier') flags.mark_flag_as_required('epochs') def apply_dp_sgd_analysis(q, sigma, steps, orders, delta): """Compute and print results of DP-SGD analysis.""" rdp = compute_rdp(q, sigma, steps, orders) eps, _, opt_order = get_privacy_spent(orders, rdp, target_delta=delta) print('DP-SGD with sampling rate = {:.3g}% and noise_multiplier = {} iterated' ' over {} steps satisfies'.format(100 * q, sigma, steps), end=' ') print('differential privacy with eps = {:.3g} and delta = {}.'.format( eps, delta)) print('The optimal RDP order is {}.'.format(opt_order)) if opt_order == max(orders) or opt_order == min(orders): print('The privacy estimate is likely to be improved by expanding ' 'the set of orders.') def main(argv): del argv # argv is not used. q = FLAGS.batch_size / FLAGS.N # q - the sampling ratio. if q > 1: raise app.UsageError('N must be larger than the batch size.') orders = [1.25, 1.5, 1.75, 2., 2.25, 2.5, 3., 3.5, 4., 4.5] + list(range(5, 64)) + [128, 256, 512] steps = int(math.ceil(FLAGS.epochs * FLAGS.N / FLAGS.batch_size)) apply_dp_sgd_analysis(q, FLAGS.noise_multiplier, steps, orders, FLAGS.delta) if __name__ == '__main__': app.run(main)