# Copyright 2019, The TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implements DPQuery interface for normalized queries. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from distutils.version import LooseVersion import tensorflow as tf from privacy.dp_query import dp_query if LooseVersion(tf.__version__) < LooseVersion('2.0.0'): nest = tf.contrib.framework.nest else: nest = tf.nest class NormalizedQuery(dp_query.DPQuery): """DPQuery for queries with a DPQuery numerator and fixed denominator.""" def __init__(self, numerator_query, denominator): """Initializer for NormalizedQuery. Args: numerator_query: A DPQuery for the numerator. denominator: A value for the denominator. May be None if it will be supplied via the set_denominator function before get_noised_result is called. """ self._numerator = numerator_query self._denominator = ( tf.cast(denominator, tf.float32) if denominator is not None else None) def initial_global_state(self): """See base class.""" # NormalizedQuery has no global state beyond the numerator state. return self._numerator.initial_global_state() def derive_sample_params(self, global_state): """See base class.""" return self._numerator.derive_sample_params(global_state) def initial_sample_state(self, global_state, template): """See base class.""" # NormalizedQuery has no sample state beyond the numerator state. return self._numerator.initial_sample_state(global_state, template) def preprocess_record(self, params, record): return self._numerator.preprocess_record(params, record) def accumulate_preprocessed_record( self, sample_state, preprocessed_record): """See base class.""" return self._numerator.accumulate_preprocessed_record( sample_state, preprocessed_record) def get_noised_result(self, sample_state, global_state): """See base class.""" noised_sum, new_sum_global_state = self._numerator.get_noised_result( sample_state, global_state) def normalize(v): return tf.truediv(v, self._denominator) return nest.map_structure(normalize, noised_sum), new_sum_global_state def merge_sample_states(self, sample_state_1, sample_state_2): """See base class.""" return self._numerator.merge_sample_states(sample_state_1, sample_state_2) def set_denominator(self, denominator): """Sets the denominator for the NormalizedQuery.""" self._denominator = tf.cast(denominator, tf.float32)