# Copyright 2020, The TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Estimator heads that allow integration with TF Privacy.""" import tensorflow as tf from tensorflow_privacy.privacy.estimators import head_utils from tensorflow_estimator.python.estimator import estimator from tensorflow_estimator.python.estimator.canned import dnn class DNNClassifier(estimator.Estimator): """DP version of `tf.estimator.DNNClassifier`.""" def __init__( self, hidden_units, feature_columns, model_dir=None, n_classes=2, weight_column=None, label_vocabulary=None, optimizer=None, activation_fn=tf.nn.relu, dropout=None, config=None, warm_start_from=None, loss_reduction=tf.keras.losses.Reduction.NONE, batch_norm=False, ): """See `tf.estimator.DNNClassifier`.""" head = head_utils.binary_or_multi_class_head( n_classes, weight_column=weight_column, label_vocabulary=label_vocabulary, loss_reduction=loss_reduction) estimator._canned_estimator_api_gauge.get_cell('Classifier').set('DNN') def _model_fn(features, labels, mode, config): return dnn.dnn_model_fn_v2( features=features, labels=labels, mode=mode, head=head, hidden_units=hidden_units, feature_columns=tuple(feature_columns or []), optimizer=optimizer, activation_fn=activation_fn, dropout=dropout, config=config, batch_norm=batch_norm) super().__init__( model_fn=_model_fn, model_dir=model_dir, config=config, warm_start_from=warm_start_from)