# Copyright 2020, The TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common tools for DP-SGD MNIST tutorials.""" # These are not necessary in a Python 3-only module. from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf import tensorflow_datasets as tfds def get_cnn_model(features): """Given input features, returns the logits from a simple CNN model.""" input_layer = tf.reshape(features, [-1, 28, 28, 1]) y = tf.keras.layers.Conv2D( 16, 8, strides=2, padding='same', activation='relu').apply(input_layer) y = tf.keras.layers.MaxPool2D(2, 1).apply(y) y = tf.keras.layers.Conv2D( 32, 4, strides=2, padding='valid', activation='relu').apply(y) y = tf.keras.layers.MaxPool2D(2, 1).apply(y) y = tf.keras.layers.Flatten().apply(y) y = tf.keras.layers.Dense(32, activation='relu').apply(y) logits = tf.keras.layers.Dense(10).apply(y) return logits def make_input_fn(split, input_batch_size=256, repetitions=-1, tpu=False): """Make input function on given MNIST split.""" def input_fn(params=None): """A simple input function.""" batch_size = params.get('batch_size', input_batch_size) def parser(example): image, label = example['image'], example['label'] image = tf.cast(image, tf.float32) image /= 255.0 label = tf.cast(label, tf.int32) return image, label dataset = tfds.load(name='mnist', split=split) dataset = dataset.map(parser).shuffle(60000).repeat(repetitions).batch( batch_size) # If this input function is not meant for TPUs, we can stop here. # Otherwise, we need to explicitly set its shape. Note that for unknown # reasons, returning the latter format causes performance regression # on non-TPUs. if not tpu: return dataset # Give inputs statically known shapes; needed for TPUs. images, labels = tf.data.make_one_shot_iterator(dataset).get_next() # return images, labels images.set_shape([batch_size, 28, 28, 1]) labels.set_shape([ batch_size, ]) return images, labels return input_fn