# Copyright 2018, The TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Differentially private optimizers for TensorFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from privacy.analysis import privacy_ledger from privacy.optimizers import gaussian_query def make_optimizer_class(cls): """Constructs a DP optimizer class from an existing one.""" if (tf.train.Optimizer.compute_gradients.__code__ is not cls.compute_gradients.__code__): tf.logging.warning( 'WARNING: Calling make_optimizer_class() on class %s that overrides ' 'method compute_gradients(). Check to ensure that ' 'make_optimizer_class() does not interfere with overridden version.', cls.__name__) class DPOptimizerClass(cls): """Differentially private subclass of given class cls.""" def __init__( self, dp_average_query, num_microbatches, unroll_microbatches=False, *args, # pylint: disable=keyword-arg-before-vararg **kwargs): super(DPOptimizerClass, self).__init__(*args, **kwargs) self._dp_average_query = dp_average_query self._num_microbatches = num_microbatches self._global_state = self._dp_average_query.initial_global_state() # TODO(b/122613513): Set unroll_microbatches=True to avoid this bug. # Beware: When num_microbatches is large (>100), enabling this parameter # may cause an OOM error. self._unroll_microbatches = unroll_microbatches def compute_gradients(self, loss, var_list, gate_gradients=tf.train.Optimizer.GATE_OP, aggregation_method=None, colocate_gradients_with_ops=False, grad_loss=None): # Note: it would be closer to the correct i.i.d. sampling of records if # we sampled each microbatch from the appropriate binomial distribution, # although that still wouldn't be quite correct because it would be # sampling from the dataset without replacement. microbatches_losses = tf.reshape(loss, [self._num_microbatches, -1]) sample_params = ( self._dp_average_query.derive_sample_params(self._global_state)) def process_microbatch(i, sample_state): """Process one microbatch (record) with privacy helper.""" grads, _ = zip(*super(cls, self).compute_gradients( tf.gather(microbatches_losses, [i]), var_list, gate_gradients, aggregation_method, colocate_gradients_with_ops, grad_loss)) grads_list = list(grads) sample_state = self._dp_average_query.accumulate_record( sample_params, sample_state, grads_list) return sample_state if var_list is None: var_list = ( tf.trainable_variables() + tf.get_collection( tf.GraphKeys.TRAINABLE_RESOURCE_VARIABLES)) sample_state = self._dp_average_query.initial_sample_state( self._global_state, var_list) if self._unroll_microbatches: for idx in range(self._num_microbatches): sample_state = process_microbatch(idx, sample_state) else: # Use of while_loop here requires that sample_state be a nested # structure of tensors. In general, we would prefer to allow it to be # an arbitrary opaque type. cond_fn = lambda i, _: tf.less(i, self._num_microbatches) body_fn = lambda i, state: [tf.add(i, 1), process_microbatch(i, state)] idx = tf.constant(0) _, sample_state = tf.while_loop(cond_fn, body_fn, [idx, sample_state]) final_grads, self._global_state = ( self._dp_average_query.get_noised_result( sample_state, self._global_state)) return list(zip(final_grads, var_list)) return DPOptimizerClass def make_gaussian_optimizer_class(cls): """Constructs a DP optimizer with Gaussian averaging of updates.""" class DPGaussianOptimizerClass(make_optimizer_class(cls)): """DP subclass of given class cls using Gaussian averaging.""" def __init__( self, l2_norm_clip, noise_multiplier, num_microbatches, unroll_microbatches=False, *args, # pylint: disable=keyword-arg-before-vararg **kwargs): dp_average_query = gaussian_query.GaussianAverageQuery( l2_norm_clip, l2_norm_clip * noise_multiplier, num_microbatches) if 'population_size' in kwargs: population_size = kwargs.pop('population_size') max_queries = kwargs.pop('ledger_max_queries', 1e6) max_samples = kwargs.pop('ledger_max_samples', 1e6) selection_probability = num_microbatches / population_size ledger = privacy_ledger.PrivacyLedger( population_size, selection_probability, max_samples, max_queries) dp_average_query = privacy_ledger.QueryWithLedger( dp_average_query, ledger) super(DPGaussianOptimizerClass, self).__init__( dp_average_query, num_microbatches, unroll_microbatches, *args, **kwargs) return DPGaussianOptimizerClass DPAdagradOptimizer = make_optimizer_class(tf.train.AdagradOptimizer) DPAdamOptimizer = make_optimizer_class(tf.train.AdamOptimizer) DPGradientDescentOptimizer = make_optimizer_class( tf.train.GradientDescentOptimizer) DPAdagradGaussianOptimizer = make_gaussian_optimizer_class( tf.train.AdagradOptimizer) DPAdamGaussianOptimizer = make_gaussian_optimizer_class(tf.train.AdamOptimizer) DPGradientDescentGaussianOptimizer = make_gaussian_optimizer_class( tf.train.GradientDescentOptimizer)